Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A natural pumice stone stone coated with manganese (Mn) has been prepared and utilized to remove hexavalent chromium (Cr(VI)) ions in water via adsorption process. Prior to the application, the natural pumice was ground, sieved, and immerse in a dilute HCl solution. The coating of Mn on the acid-activated pumice was carried out by soaking the powder in 0.5 M Mn(NO3)2 solution for 72 h. The characterisation of the produced pumice adsorbent was performed with scanning electron microscopy and fourier-transform infrared spectroscopy instruments. The adsorption of Cr(VI) onto Mn-coated pumices was optimum at pH 3. Both the Langmuir and Freundlich isotherm models could be used to describe the adsorption process. The rate of adsorption followed the model for pseudo- second-order kinetics. The maximum adsorption capacity of Mn-coated pumice towards Cr(VI) ions was 1.94 mg/g.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
229--235
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Jl. Kaliurang Km. 14.5, Yogyakarta 55584, Indonesia
autor
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Islam Indonesia, Jl. Kaliurang Km. 14.5, Yogyakarta 55584, Indonesia
autor
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Jl. Kaliurang Km. 14.5, Yogyakarta 55584, Indonesia
autor
- Department of Environmental Engineering, Faculty of Civil Engineering and Planning, Universitas Islam Indonesia, Jl. Kaliurang Km. 14.5, Yogyakarta 55584, Indonesia
Bibliografia
- 1. Asere, T.G., Mincke, S., Clercq, J.D., Verbeken, K., Tessema, D.A., Fufa, F., Stevens, C. V., Laing, G.D. 2017. Removal of arsenic (V) from aqueous solutions using chitosan–red scoria and chitosan–pumice blends. Int. J. Environ. Res. Public Health. 14(8), 895. https://doi.org/10.3390/ijerph14080895.
- 2. Çifçi, D.I., Meriç, S. 2017. Manganese adsorption by iron impregnated pumice composite. Colloids Surf. A: Physicochem. Eng. 522, 279–286. https://doi.org/10.1016/j.colsurfa.2017.03.004.
- 3. Far, L.B., Souri, B., Heidari, M., Khoshnavazi R. (2012). Evaluation of iron and manganese-coated pumice application for the removal of As(V) from aqueous solutions. Iran. J. Environ. Health Sci. Eng. 9, 21.
- 4. Guler, U., Sarioglu, M. 2014. Removal of tetracycline from wastewater using pumice stone: equilibrium, kinetic and thermodynamic studies. J. Environ. Health Sci. Engineer. 12, 79. https://doi.org/10.1186/2052-336X-12-79.
- 5. Kasraee, M., Dehghani, M.H., Hamidi, F., Mubarak, M.N., Karri, R.R., Rajamohan, N., Solangi, N.H. 2023. Adsorptive removal of acid red 18 dye from aqueous solution using hexadecyl-trimethyl ammonium chloride modified nano-pumice. Sci. Rep. 13, 13833. https://doi.org/10.1038/s41598-023-41100-w
- 6. Kitis, M., Kaplan, S.S., Karakaya, E., Yigit, N.O., Civelekoglu, G. 2007. Adsorption of natural organic matter from waters by iron coated pumice. Chemosphere. 66, 130–138.
- 7. Liu, H., Zhang, F., Peng, Z. 2019. Adsorption mechanism of Cr(VI) onto Go/pAMAMs composites. Sci. Rep. 9(3663), 1–12.
- 8. Ojembarrena, F.B., Sammaraie, H., Campano, C., Blanco, A., Merayo, N., Negro, C. 2022. Hexavalent chromium removal from industrial wastewater by adsorption and reduction onto cationic cellulose nanocrystals. Nanomaterials. 12(23), 4172. https://doi.org/10.3390/nano12234172.
- 9. Öztürk, D., Ş ahan, T. 2015. Design and optimization of Cu(II) adsorption conditions from aqueous solutions by low-cost adsorbent pumice with Response Surface Methodology. Pol. J. Environ. Stud. 24(4), 1749–1756. https://doi.org/10.15244/pjoes/40270.
- 10. Radoor, S., Karayil, J., Jayakumar, A., Parameswaranpillai, J., Lee, J., Siengchin, S. 2022 Ecofriendly and low-cost bio adsorbent for efficient removal of methylene blue from aqueous solution. Sci. Rep. 12, 20580. https://doi.org/10.1038/s41598-022-22936-0.
- 11. Rouhaninezhad, A.A., Hojati, S., Masir, M.N. 2020. Adsorption of Cr(VI) onto micro- and nanoparticles of palygorskite in aqueous solutions: Effects of pH and humic acid. Ecotoxicol. Environ. Saf. 206(111247), 1–8.
- 12. Safari, G.H., Zarrabi, M., Hoseini, M., Kamani, H., Jaafari, J., Mahvi, A.H. 2015. Trends of natural and acid-engineered pumice onto phosphorus ions in aquatic environment: adsorbent preparation, characterization, and kinetic and equilibrium modeling. Desalin. Water Treat. 54(11), 3031–3043. https://doi.org/10.1080/19443994.2014.915385.
- 13. Ş ahan , T., Öztürk, D. 2014. Investigation of Pb (II) adsorption onto pumice samples: Application of optimization method based on fractional factorial design and response surface methodology. Clean Technol. Environ. Policy. 16(5), 819–831. https://doi.org/10.1007/s10098-013-0673-8.
- 14. Sepehr, M.N., Sivasankar, V., Zarrabi, M., Kumar, M.S. 2013. Surface modification of pumice enhancing its fluoride adsorption capacity: An insight into kinetic and thermodynamic studies. Chem. Eng. J. 228, 192–204. http://dx.doi.org/10.1016/j.cej.2013.04.089.
- 15. Tchounwou, P.B., Yedjou, C.G, Patlolla, A.K., Sutton, D.J. 2012. Heavy metal toxicity and the environment. Exp. Suppl. 101, 133–164.
- 16. Unceta, N, Séby, F., Malherbe, J., Donard, O.F.X. 2010. Chromium speciation in solid matrices and regulation: a review. Anal. Bioanal. Chem. 397, 1097–1111. https://doi.org/10.1007/s00216-009-3417-1.
- 17. Wise Jr., J.P., Young, J.L., Cai, J., Cai, L. 2022. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ. Int. 158, 106877. https://doi.org/10.1016/j.envint.2021.106877.
- 18. Zhang R., Zhang, J., Zhang, X., Dou, C., Han, R. 2014. Adsorption of Congo red from aqueous solutions using cationic surfactant modified wheat straw in batch mode: Kinetic and equilibrium study, J. Taiwan Inst. Chem. Eng. 45, 2578–2583. https://doi.org/10.1016/j.jtice.2014.06.009.
- 19. Zhang, T., Wei, S., Waterhouse, G.I.N., Fu, L., Liu, L., Shi, W., Sun, J., Ai, S. 2020. Chromium (VI) adsorption and reduction by humic acid coated nitrogen-doped magnetic porous carbon. Powder Technol. 360, 55–64. https://doi.org/10.1016/j.powtec.2019.09.091.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8b1dbe7-0c92-4243-99cb-3112c73f8568