PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Predicted Crystal Structures, Analysis, Impact Sensitivities and Morphology of Solid High-Energy Complexes: Alkaline-Earth Carbohydrazide Perchlorates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crystal structures, density of states, energy gap, thermodynamic properties, impact sensitivities and morphology of beryllium carbohydrazide perchlorate ([Be(CHZ)3](ClO4)2), magnesium carbohydrazide perchlorate ([Mg(CHZ)3](ClO4)2), calcium carbohydrazide perchlorate ([Ca(CHZ)3] (ClO4)2), strontium carbohydrazide perchlorate ([Sr(CHZ)3](ClO4)2) and barium carbohydrazide perchlorate ([Ba(CHZ)3](ClO4)2) were investigated using the density functional theory (DFT) and crystal morphology theory. The results show that all of the complexes have six-coordinated distorted octahedra, which is different from previous works. This was rationalised by consideration of the intermolecular interactions in the crystal structures. Hence the crystal structure is now more reliable. The chemical reactions of the whole molecule may be triggered by an electron transition of CHZ or ClO4 −. Furthermore the energy gaps were observed, and the values of the impact sensitivities were inferred to have the following sequence: [Be(CHZ)3](ClO4)2 > [Mg(CHZ)3](ClO4)2 > [Sr(CHZ)3](ClO4)2 > [Ca(CHZ)3](ClO4)2 > [Ba(CHZ)3](ClO4)2. In addition, the thermodynamic equations at 25-1000 K were obtained. The positive values of the standard molar free enthalpies shows that carbohydrazide perchlorates are stable at 298.15 K. The (1 0 -1) and (0 0 2) faces are the most important growth directions of the crystal morphologies, and have the minimum growth rates. From the cleaved main growth faces, it can be deduced that surface active agents with active hydrogen atoms in the functional groups could be used as crystal-control reagents to control the crystal morphology for alkaline-earth carbohydrazide perchlorates.
Rocznik
Strony
229--248
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • National Key Laboratory of Applied Physics and Chemistry, Shanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
autor
  • State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China
Bibliografia
  • [1] Talawar M., Agrawal A., Chhabra J., Asthana S., Studies on Lead-free Initiators: Synthesis, Characterization and Performance Evaluation of Transition Metal Complexes of Carbohydrazide, J. Hazard. Mater., 2004, 113(1), 57-65.
  • [2] Sinditskii V., Fogelzang A., Dutov M., Sokol V., Serushkin V., Svetlov B., Structure of Complex-compounds of Metal Chlorides, Sulfates, Nitrates and Perchlorates with Carbohydrazine, Russ. J. Inorg. Chem., 1987, 32(8), 1944-1949.
  • [3] Sinditskii V.P., Fogelzang A.E., Dutov M.D., Serushkin V.V., Yarkov S.P., Svetlov B.S., Complex-compounds of Carbohydrazide with Copper(II) Colts, Russ. J. Inorg. Chem., 1986, 31(7), 1759-1765.
  • [4] Dutta R., Sarkar A., A Study of Metal Complexes of Carbohydrazide, J. Inorg. Nucl. Chem., 1981, 43(10), 2557-2559.
  • [5] Konkova T., Matyushin Y., Sidnitskii V., Thermodynamics of Coordination Co(II), Ni(II), Zn, and Cd Compounds with Carbohydrazide, Chem. Phys. Rep., 1995, 14(6), 865.
  • [6] Akiyoshi M., Nakamura H., Hara Y., The Thermal Behavior of the Zinc Complexes as a Non-azide Gas Generant for Safer Driving − Zn Complexes of the Carbohydrazide and Semicarbazide, Propellants Explos. Pyrotech., 2000, 25(1), 41-46.
  • [7] Fouda M., Abd-Elzaher M., Shakdofa M., El Saied F., Ayad M., El Tabl A., Synthesis and Characterization of Transition Metal Complexes of N`-[(1, 5-dimethyl-3-oxo-2-phenyl-2, 3-dihydro-1H-pyrazol-4-yl) Methylene] thiophene-2-Carbohydrazide, Transit. Metal Chem., 2008, 33(2), 219-228.
  • [8] Qi S.Y., Li Z.M., Zhang T.L, Zhou Z.N., Yang L., Zhang J.G., Qiao X.J., Yu K.B., Crystal Structure, Thermal Analysis and Sensitivity Property of [Zn(CHZ)3](ClO4)2, Acta Chim. Sinica, 2011, 69(8), 987-992.
  • [9] Sun Y., Zhang T., Zhang J., Qiao X., Yang L., Flash Pyrolysis Study of Zinc Carbohydrazide Perchlorate Using T-jump/FTIR Spectroscopy, Combust. Flame, 2006, 145(3), 643-646.
  • [10] Chunhua L., Tonglai Z., Ruijiao C., Synthesis, Molecular Structures and Explosive Properties of [M(CHZ)3](ClO4)2 (M= Cd, Ni, Mn), in: Proc. 3rd International Autumn Seminar on Propellants, Explosives and Pyrotechnics, Beijing, Republic of China, 1999, 33.
  • [11] Akiyoshi M., Nakamura H., Hara Y., The Strontium Complex Nitrates of Carbohydrazide as a Non-azide Gas Generator for Safer Driving − the Thermal Behavior of the Sr Complex with Various Oxidizing Agents, Propellants Explos. Pyrotech., 2000, 25(5), 224-229.
  • [12] Ivanov M., Kalinichenko I., Some Complexes of Metal Nitrates, Sulfates and Chlorides with Carbohydrazide, Russ. J. Inorg. Chem., 1981, 26(8), 2134-2137.
  • [13] Sonawane S., Gore G., Polke B., Nazare A., Asthana S., Transition Metal Carbohydrazide Nitrates: Burn-rate Modifiers for Propellants, Defence Sci. J., 2006, 56(3), 391-398.
  • [14] Lv C.-H., Zhang T.-L., Qiao X.-J., Cai R.-J., Yu K.-B., Structure and Thermal Decomposition Mechanism of [Pb2(TNR)2(CHZ)2(H2O)2]·4H2O, Acta Phys. Chim. Sinica, 2000, 16(05), 441-446.
  • [15] Zuo X.L., Qiao X.J., Sun Y.H., Zhang T.L., Zhang J.G., Yang L., Wang S.Z., Rapid Thermolysis Studies of [Pb2(TNR)2(CHZ)2(H2O)2]·4H2O and Cd (CHZ)2(TNR)(H2O), Chin. J. Chem., 2007, 25(7), 906-909.
  • [16] Zhang T., Lu C., Qiao X., Cai R., Yu K., Preparation and Crystal Structure of [Mn2(TNR)2(CHZ)2(H2O)4]·2H2O, Chin. J. Struct. Chem., 1999, 18(6), 432-436.
  • [17] Zhang T.L., Lu Ch.H., Zhang J.G., Yu K.B., Preparation and Molecular Structure of {[Ca(CHZ)2(H2O)](NTO) 2·3.5H2O}n, Propellants Explos. Pyrotech., 2003, 28(5), 271-276.
  • [18] Akiyoshi M., Hirata N., Nakamura H., Hara Y., The Thermal Behavior of the Carbohydrazide Complexes of Certain Metals (1): The Synthesis and the Thermal Analysis, Kayaku Gakkaishi, 1996, 57(6), 238-243.
  • [19] Huang H., Zhang T., Zhang J., Wang L., A Screened Hybrid Density Functional Study on Energetic Complexes: Alkaline-earth Metal Carbohydrazide Perchlorates,m J. Mol. Struct. − THEOCHEM, 2009, 915(1-3), 43-46.
  • [20] Li Z.-M., Zhang T.-L., Yang L., Zhou Z.-N., Zhang J.-G., Synthesis, Crystal Structure, Thermal Decomposition, and Non-isothermal Reaction Kinetic Analysis of an Energetic Complex:[Mg(CHZ)3](ClO4)2 (CHZ = carbohydrazide), J. Coord. Chem., 2012, 65(1), 143-155.
  • [21] Dong H., Hu R., Yao P., Zhang X., Thermograms of Energetic Materials, Natl. Def. Ind. Press, Beijing, 2002, pp. 276-300.
  • [22] Holl G., Klapötke T.M., Polborn K., Rienacker C., Structure and Bonding in 2-diazo-4,6-dinitrophenol (DDNP), Propellants Explos. Pyrotech., 2003, 28(3), 153-156.
  • [23] Yang Z.-W., Liu Y.-C., Liu D.-C., Yan L.-W., Chen J., Synthesis and Characterization of Spherical 2-Diazo-4,6-dinitrophenol (DDNP), J. Hazard. Mater., 2010, 177(1-3), 938-943.
  • [24] Duan X., Wei C., Liu Y., Pei C., A Molecular Dynamics Simulation of Solvent Effects on the Crystal Morphology of HMX, J. Hazard. Mater., 2010, 174(1), 175-180.
  • [25] Czerski H., Proud W., Relationship Between the Morphology of Granular Cyclotrimethylene-trinitramine and Its Shock Sensitivity, J. Appl. Phys., 2007, 102(11), 113515.
  • [26] Hattori K., McCrone W., Crystallographic Data. 140a. Lead Azide, Pb (N3) 2 (Form I), Anal. Chem., 1956, 28(11), 1791-1792.
  • [27] Taylor G., Thomas A., Spontaneous Explosion During Crystal Growth of Lead Azide, J. Cryst. Growth, 1968, 3, 391-394.
  • [28] Baer M., Modeling Heterogeneous Energetic Materials at the Mesoscale, Thermochim. Acta, 2002, 384(1), 351-367.
  • [29] Fabbiani F.P., Pulham C.R., High-pressure Studies of Pharmaceutical Compounds and Energetic Materials, Chem. Soc. Rev., 2006, 35(10), 932-942.
  • [30] Kröber H., Teipel U., Crystallization of Insensitive HMX, Propellants Explos. Pyrotech., 2008, 33(1), 33-36.
  • [31] Fischer T.H., Almlof J., General Methods for Geometry and Wave Function Optimization, J. Phys. Chem., 1992, 96(24), 9768-9774.
  • [32] Vanderbilt D., Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism, Phys. Rev. B, 1990, 41(11), 7892.
  • [33] Bates S., Kresse G., Gillan M., A Systematic Study of the Surface Energetics and Structure of TiO2 (110) by First-Principles Calculations, Surf. Sci., 1997, 385(2), 386-394.
  • [34] Perdew J.P., Chevary J., Vosko S., Jackson K.A., Pederson M.R., Singh D., Fiolhais C., Atoms, Molecules, Solids, and Surfaces: Applications of the Generalized Gradient Approximation for Exchange and Correlation, Phys. Rev. B, 1992, 46(11), 6671.
  • [35] Perdew J.P., Wang Y., Pair-distribution Function and its Coupling-constant Average for the Spin-polarized Electron Gas, Phys. Rev. B, 1992, 46(20), 12947.
  • [36] Friedel M., Etudes sur la loi de Bravais, Bulletin de la Societe Francaise Mineralogique, 1907, 30, 326-455.
  • [37] Bravais A., Etudes Crystallographiques, Academie des Sciences, Paris, 1913.
  • [38] Donnay J., Harker D., A New Law of Crystal Morphology Extending the Law of Bravais, Am. Mineral, 1937, 22(5), 446-467.
  • [39] Hartman P., Perdok W., On the Relations Between Structure and Morphology of Crystals. I., Acta Crystallogr., 1955, 8(1), 49-52.
  • [40] Bennema P., Meekes H., Boerrigter S., Cuppen H., Deij M., Van Eupen J., Verwer P., Vlieg E., Crystal growth and Morphology: New Developments in an Integrated Hartman-Perdok Connected Net Roughening Transition Theory, Supported by Computer Simulations, Cryst. Growth Des., 2004, 4(5), 905-913.
  • [41] Berkovitch-Yellin Z., Toward an Ab Initio Derivation of Crystal Morphology, J. Am. Chem. Soc., 1985, 107(26), 8239-8253.
  • [42] Huang H., Zhang T., Zhang J., Wang L., A Screened Hybrid Density Functional Study on Energetic Complexes: Cobalt, Nickel and Copper Carbohydrazide Perchlorates, J. Hazard. Mater., 2010, 179(1-3), 21-27.
  • [43] Zhu W., Xiao H., Ab Initio Molecular Dynamics Study of Temperature Effects on the Structure and Stability of Energetic Solid Silver Azide, J. Phys. Chem. C, 2011, 115(42), 20782-20787.
  • [44] Zhu W., Xiao H., Ab Initio Study of Energetic Solids: Cupric Azide, Mercuric Azide, and Lead Azide, J. Phys. Chem. B, 2006, 110(37), 18196-18203.
  • [45] Huang H., Zhang T., Zhang J., Wang L., A Screened Hybrid Density Functional Study on Energetic Complexes: Metal Carbohydrazide Nitrates, Int. J. Quantum Chem., 2011, 111(10), 2311-2316.
  • [46] Huang H., Zhang T., Zhang J., Wang L., Density Functional Theoretical Study of Transition Metal Carbohydrazide Perchlorate Complexes, Chem. Phys. Lett., 2010, 487(4-6), 200-203.
  • [47] Sun H.Y., Chen C.J., Bozzelli J.W., Structures, Intramolecular Rotation Barriers, and Thermodynamic Properties (Enthalpies, Entropies and Heat Capacities) of Chlorinated Methyl Hydroperoxides (CH2ClOOH, CHCl2OOH, and CCl3OOH), J. Phys. Chem. A, 2000, 104(35), 8270-8282.
  • [48] Chen J., Wang J., Zhang Y., Wu H., Chen W., Guo Z., Crystal Growth, Structure and Morphology of Hydrocortisone Methanol Solvate, J. Cryst. Growth, 2004, 265(1), 266-273.
  • [49] Givand J.C., Rousseau R.W., Ludovice P.J., Characterization of L-isoleucine Crystal Morphology from Molecular Modeling, J. Cryst. Growth, 1998, 194(2), 228-238.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8af53bb-9c20-4666-99f4-190b0941d7a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.