PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study the precision of fixed partial dentures of Co-Cr alloys cast over 3D printed prototypes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: of this paper is to investigate the accuracy of Co-Cr dental bridges, manufactured using 3D printed cast patterns. Design/methodology/approach: Four-unit dental bridges are fabricated from the alloys i-Alloy and Biosil-f by lost-wax process. The polymeric cast patterns are 3D printed with different layer’s thickness (13 pm, 35 pm and 50 pm). Two 3D printers are used: stereolithographic “Rapidshape D30” and ink-jet “Solidscape 66+”. The geometrical and fitting accuracy as well as the surface roughness are investigated. Findings: It is established that Co-Cr bridges, casted from 3D printed patterns with 50 pm layer thickness, characterize with the largest dimensions - 3.30%-9.14% larger than those of the base model. Decreasing the layer thickness leads to dimensional reduction. The dimensions of the bridges, casted on patterns with 13 pm layer thickness, are 0.17%-2.86% smaller compared to the primary model. The average roughness deviation Ra of the surface of Co-Cr bridges, manufactured using 3D printed patterns, is 3-4 times higher in comparison to the bridge-base model. The greater the layer thickness of the patterns, the higher Ra of the bridges. The silicone replica test shows 0.1-0.2 mm irregular gap between the bridge retainers and abutments of the cast patterns and Co-Cr bridges. Research limitations/implications: Highly precise prosthetic constructions, casted from 3D printed patterns, can be produced only if the specific features of the 3D printed objects are taken in consideration. Practical implications: Present research has shown that the lower the thickness of the printed layer of cast patterns, the higher the dimensional accuracy and the lower the surface roughness. Originality/value: The findings in this study will help specialist in dental clinics and laboratories to choose the right equipment and optimal technological regimes for production of cast patterns with high accuracy and low surface roughness for casting of precise dental constructions.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
autor
  • Faculty of Dental Medicine, Medical University of Varna, 55 Marin Drlnov Str, 9002 Varna, Bulgaria
autor
  • Faculty of Dental Medicine, Medical University of Varna, 55 Marin Drlnov Str, 9002 Varna, Bulgaria
autor
  • Faculty of Dental Medicine, Medical University of Varna, 55 Marin Drlnov Str, 9002 Varna, Bulgaria
autor
  • Faculty of Dental Medicine, Medical University of Varna, 55 Marin Drlnov Str, 9002 Varna, Bulgaria
Bibliografia
  • [1] R. van Noort, The future of dental devices is digital, Dental Materials 28/1 (2012) 3-12, doi: https://doi.org/ 10.1016/j.dental.2011.10.014.
  • [2] T. Dikova, D. Dzhendov, M. Simov, I. Katreva- Bozukova, S. Angelova, D. Pavlova, M. Abadzhiev, T. Tonchev, Modem Trends in the Development of the Technologies for Production of Dental Constructions, Journal of IMAB 21/4 (2015) 974-981, doi: http://dx.doi.org/10.5272/jimab.2015214.974.
  • [3] Y. Sofronov, N. Nikolov, G. Todorov, Analysis of Technologies for Rapid Prototyping of Dental Constructions, Scripta Scientifica Medicinae Dentalis 2/1 (2016) 32-38, doi: http://dx.doi.org/10.14748/ ssmd.vlil.1726.
  • [4] K. Torabi, E. Farjood, Sh. Hamedani, Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature, Journal of Dentistry. Shiraz University of Medical Sciences 16/1 (2015) 1-9.
  • [5] O. Onoral, M. Ulusoy, New Approaches in Computer Aided Printing Technologies, Cumhuriyet Dental Journal 19/3 (2016) 256-266.
  • [6] M. Bilgin, E. Baytaroglu, A. Erdem, E. Dilber, A review of computer-aided design/computer-aided manufacture techniques for removable denture fabrication, European Journal of Dentistry 10 (2016) 286-291, doi: 10.4103/1305-7456.178304.
  • [7] T. Dikova, D. Dzhendov, K. Bliznakova, D. Ivanov, Application of 3D Printing in Manufacturing of Cast Patterns, in: S. Cvetkovski, G. Nacevski (Eds.), Proceedings of the VIIth International Metallurgical Congress, Ohrid, Macedonia, 2016, CD-ROM.
  • [8] R. Minev, E. Minev, Technologies for Rapid Prototyping (RP) - Basic Concepts, Quality Issues and Modem Trends, Scripta Scientifica Medicinae Dentalis 2/1 (2016) 29-39, doi: http://dx.doi.org/ 10.14748/ssmd.vlil.l647.
  • [9] R.F. Kuo, K.M. Fang, F.C. Su, Open-Source Technologies and Workflows in Digital Dentistry, in: K. Sasaki, O. Suzuki, N. Takahashi (Eds.), Interface Oral Health Science 2016, 1st Edition, Springer, Singapore, 2017, 165-170.
  • [10] P.F. Jacobs, Rapid Prototyping & Manufacturing, 1st Edition, Second printing edition, Society of Manufacturing Engineers, Dearborn, USA, 1992.
  • [11] T. Dikova, D. Dzhendov, I. Katreva, D. Pavlova, Accuracy of polymeric dental bridges manufactured by stereolithography, Archives of Materials Science and Engineering 78/1 (2016) 29-36, doi: 10.5604/ 18972764.1226313.
  • [12] L. Shamseddine, R. Mortada, K. Rafai, J.J. Chidiac, Fit of pressed crowns fabricated from two CAD-CAM wax pattern process plans: A comparative in vitro study, The Journal of Prosthetic Dentistry 118/1 (2017) 49-54, doi: https://doi.org/10.1016/ j.prosdent. 2016.10.003.
  • [13] Y.M. Huang, H.Y. Lan, Compensation of distortion in the bottom exposure of stereolithography process, The International Journal of Advanced Manufacturing Technology 27/11-12 (2006) 1101-1112, doi: https://doi.org/10.1007/s00170-004-2313-2.
  • [14] D. Dean, W. Jonathan, A. Siblani, M.O. Wang, K. Kim, A.G. Mikos, J.P. Fisher, Continuous digital light processing (cDLP): highly accurate additive manufacturing of tissue engineered bone scaffolds, Virtual and Physical Prototyping 7/1 (2012) 13-24, doi: 10.1080/17452759.2012.673152.
  • [15] P.T. Lan, S.Y. Chou, L.L. Chen, D. Gemmill, Determining fabrication orientations for rapid prototyping with stereolithography apparatus, Computer-Aided Design 29/1 (1997) 53-62, doi: https://doi.org/10.1016/S0010-4485(96)00049-8.
  • [16] A. Bertsch, P. Renaud, Microstereolithography, in: P.J. Bartolo (Ed.), Stereolithography: materials, processes and applications, Springer, New York, 2011, 81-112.
  • [17] D. Dimitrov, K. Schreve, N. de Beer, Advances in three dimensional printing- state of the art and future perspectives, Rapid Prototyping Journal 12/3 (2006) 136¬147, doi: https://doi.org/10.1108/13552540610670717.
  • [18] 3D Printers, 3D printing solutions, Solidscape Inc, a Stratasys Company, 2017, Available from: http://www.solid-scape.com/products/3d-materials/ Access in: 27.04.2017.
  • [19] 3D Materials for precision casting of intricate parts, Solidscape Inc, a Stratasys Company, 2017, Available from: http://www.solid-scape.com/products/3d-materials/ Access in: 27.04.2017.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8af46cf-b5c4-4e79-8d67-732a85b3e73f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.