PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Organic and inorganic geochemical study of the Lower Permian Walchia shale of the Intrasudetic Basin (SW Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Lower Permian Walchia shale of the Intrasudetic Basin is lacustrine sediment enriched in organic matter and base metals. Rock-Eval geochemical analysis was conducted on 110 drill-core rock samples of the Walchia shale in order to characterize the quantity, genetic type and maturity of dispersed organic matter. Concentrations of U, Th, Cu, Ni, V, Pb, Zn, Co, Mo, Cr, P, S and Fe were determined and microscopic studies to recognize mineral composition were performed on selected samples. Organic matter of the Walchia shale is immature and dominated by terrestrial type III kerogen with an admixture of planktonic type II kerogen. The Walchia shale is generally poor source rock, but some parts of the profile exhibit good and even excellent hydrocarbon potential. The average concentrations of analysed metals are higher than the average reported for black shales. The concentrations of base metals do not correlate with TOC contents, suggesting that their presence is associated with inorganic features of the Walchia shale or they could have been related primarily to organic matter which was subsequently oxidized and altered. Uranium may be partly associated with phosphates. Results of microscopic investigations revealed the lack of detectable radioactive minerals, abundance of framboidal pyrite, and prevalent galena, sphalerite and chalcopyrite.
Rocznik
Strony
631--643
Opis fizyczny
Bibliogr. 62 poz., rys., tab., wykr.
Twórcy
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
  • 1. Alderton, D.H.M., Selby, D., Kucha, H., Blundell, D.J., 2016. A multistage origin for Kupferschiefer mineralization. Ore Geology Reviews, 79: 535-543.
  • 2. Augustyniak, K., Grocholski, A., 1968. Geological structure and outline of the development of the Intra-Sudetic Depression. Biuletyn Instytutu Geologicznego, 227: 87-114.
  • 3. Awdankiewicz, M., Kurowski, L., Mastalerz, K., Raczyński, P., 2003. The Intra-Sudetic Basin - a record of sedimentary and volcanic processes in late- to post-orogenic tectonic setting. Geolines, 16: 165-183.
  • 4. Bareja, E., Jęczmyk, M., Kanasiewicz, J., Lis, J., Miecznik, J.B., Sałdan, M., 1982. Radioactive elements in the Sudetes (in Polish with English summary). Biuletyn Instytutu Geologicznego, 341: 259-266.
  • 5. Baturin, G.N., Kochenov, A.V., 2001. Uranium in Phosphorites. Lithology and Mineral Resources, 36: 303-321.
  • 6. Bechtel, A., Sun, Y., Püttmann, W., Hoernes, S., Hoefs, J., 2001. Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangerhausen Basin, Germany. Chemical Geology, 176: 31-49.
  • 7. Bechtel, A., Gratzer, R., Püttmann, W., Oszczepalski, S., 2002. Geochemical characteristics across the oxic/anoxic interface (Rote Fäule front) within the Kupferschiefer of the Lubin-Sieroszowice mining district (SW Poland). Chemical Geology, 185: 9-31.
  • 8. Bilkiewicz, E., 2014. Radiometric characteristics of rocks occurring in the Radków area (SE part of the Intra-Sudetic Synclinorium). Interdyscyplinarne Zagadnienia w Górnictwie i Geologii, 5: 21-25, Wrocław.
  • 9. Bossowski, A., Ihnatowicz, A., 2006. Geological atlas of the Lower Silesian Coal Basin 1:100 000. Państwowy Instytut Geologiczny, Warszawa.
  • 10. Dill, H.G., 2011. A comparative study of uranium-thorium accumulation at the western edge of the Arabian Peninsula and mineral deposits worldwide. Arabian Journal of Geosciences 4: 123-146.
  • 11. Dill, H.G., Kantor, W.,1997. Depositional environment, chemical facies and a tentative classification of some selected phosphate accumulations. Geologisches Jahrbuch, D 105: 3-43.
  • 12. Espitalié, J., Laporte, J., Madec, M., Marquis, F., Leplat, P., Paulet, J., Boutefeu, A., 1977. Methode rapide de characterisation des roches meres, leur potential petrolier et de leurdegre d'evolution. Oil & Gas Science and Technology - Rev. IFP, 32: 23-42.
  • 13. Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications. Première partie. Oil & Gas Science and Technology - Rev. IFP, 40-41: 563-579 and 755-784.
  • 14. Górecka-Nowak, A., 2008. Palynostratigraphy of the uppermost Carboniferous and lowermost Permian sediments in the Sudetes (SW Poland). 12th Internat. Palynological Congress. Terra Nostra 2008/2: 97.
  • 15. Górecka-Nowak, A., Nowak, G.J., 2008. Charakterystyka petrologiczna i palinologiczna materii organicznej czarnych łupków Sudetów (in Polish). In: Pierwszy Polski Kongres Geologiczny (ed. G. Haczewski): 32, Abstrakty, Kraków.
  • 16. Hatch, J.R., Leventhal, J.S., 1992. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chemical Geology, 99: 65-82.
  • 17. Hunt, J.M., 1996. Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York.
  • 18. Jerzykiewicz, J., 1987. Latest Carboniferous (Stephanian) and Early Permian (Autunian) palynological assemblages from the Intrasudetic Basin, southwestern Poland. Palynology, 11: 117-131.
  • 19. Jones, B., Manning, D.A.C., 1994. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstone. Chemical Geology, 111: 111-129.
  • 20. Kosakowski, P., Kotarba, M.J., Piestrzyński, A., Shogenova, A., Więcław, D., 2017. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland). International Journal of Earth Sciences, 106: 743-761.
  • 21. Krauskopf, K.B., 1955. Sedimentary deposits of rare metals. In: Economic Geology, Fiftieth Anniversary Volume (ed. A.M. Bateman): 1905-1955, part I: 411-463. Society of Economic Geologists.
  • 22. Kurowski, L., 2004. Fluvial sedimentation of sandy deposits of the Słupiec Formation (Middle Rotliegendes) near Nowa Ruda (Intra-Sudetic Basin, SW Poland). Geologia Sudetica, 36: 21-38.
  • 23. Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Oil & Gas Science and Technology - Rev. IFP 53: 421-437.
  • 24. Landais, P., 1996. Organic geochemistry of sedimentary uranium deposits. Ore Geology Reviews, 11: 33-51.
  • 25. Lecomte, A., Cathelineau, M., Michels, R., Peiffert, C., Brouand, M., 2017. Uranium mineralization in the Alum Shale Formation (Sweden): evolution of a U-rich marine black shale from sedimentation to metamorphism. Ore Geology Reviews, 88: 71-98.
  • 26. Leventhal, J., 1993. Metals in Black Shales. Topics in Geobiology, 11. Springer, Boston, MA.
  • 27. Leventhal, J., 1995. Carbon-sulfur plots to show diagenetic and epigenetic sulfidation in sediments. Geochimica et Cosmochimica Acta, 59: 1207-1211.
  • 28. Lewan, M.D., Kotarba, M.J., Więcław, D., Piestrzyński, A., 2008. Evaluating transition-metal catalysis in gas generation from the Permian Kupferschiefer by hydrous pyrolysis. Geochimica et Cosmochimica Acta, 72: 4069-4093.
  • 29. Lewandowski, P., 1990. Analcimization of the Lower Permian ryolite tuffs from the Wambierzyce region (Mid-Sudetic Depression). Archiwum Mineralogiczne, 45: 71-85.
  • 30. Mastalerz, K., 1996. New data on geochemistry of the Rotliegend lacustrine deposits of the Intra-Sudetic Basin (SW Poland) (in Polish with English summary). Przegląd Geologiczny, 44: 1135-1137.
  • 31. Mastalerz, K., Wojewoda, J., 1988. Rotliegendes sedimentary basins in the Sudetes, Central Europe. In: Rotliegendes Lacustrine Basins (eds. K. Mastalerz and J. Wojewoda). IGCP 219 Meeting, 26-28.10.1988, Książ. Materiały, 1-9. Państwowy Instytut Geologiczny.
  • 32. Mayer, W., Piestrzyński, A., 1986. Francolite from the Lower Zechstein sediments, Rudna Mine, Fore-Sudetic Monocline. Mineralogia Polonica, 17: 77-84.
  • 33. Miecznik, J.B., 1989. Uranium mineralization in the Permo-Carboniferous of the Intra-Sudetic Depression (in Polish with English summary). Przegląd Geologiczny, 37: 285-288.
  • 34. Miecznik, J.B., Strzelecki, R., 1979. The possibility of occurrence of uranium mineralization in some sedimentary formations of the Sudetes (in Polish with English summary). Przegląd Geologiczny, 27: 314-317.
  • 35. Mouro, L.D., Rakociński, M., Marynowski, L., Pisarzowska, A., Musabelliu, S., Zatoń, M., Carvalho, M.A., Ferndandes, A.C.S., Waichel, B.L., 2017. Benthic anoxia, intermittent photic zone euxinia and elevated productivity during deposition of the Lower Permian, post-glacial fossiliferous black shales of the Paraná Basin, Brazil. Global and Planetary Change, 158: 155-172.
  • 36. Nemec, W., Porębski, S., Teisseyre, A.K., 1982. Explanatory notes to the lithotectonic molasse profile of the Intra-Sudetic Basin, Polish Part. Veröffentlichungen des Zentralinstituts für Physik der Erde, Akademie der Wissenschaften der DDR , 66 : 267-278.
  • 37. Nowak, G.J., 2007. Comparative studies of organic matter petrography of the late palaeozoic black shales from Southwestern Poland. International Journal of Coal Geology, 71: 568-585.
  • 38. Peters, K.E., Cassa, M.R., 1994. Applied source rock geochemistry. AAPG Memoir, 60: 93-102.
  • 39. Pieczonka, J., 2011. Factors controlling distribution of ore minerals within copper deposit, Fore-Sudetic Monocline, SW Poland (in Polish with English summary). Wydawnictwa AGH, Kraków.
  • 40. Pieczonka, J., Piestrzyński, A., Mucha, J., Głuszek, A., Kotarba, J., Więcław, D., 2008. The red-bed-type precious metal deposition in the Sieroszowice-Polkowice copper mining district, SW Poland. Annales Societatis Geologorum Poloniae, 78:151-280.
  • 41. Piestrzyński, A., 1988. Thucholite from Lubin polymetallic deposit, new data. Neues Jahrbuch für Mineralogie Abhandlungen, 160: 57-60.
  • 42. Piestrzyński, A., 1989. Uranium and thorium in copper ore deposits on the Fore-Sudetic Monocline (SW Poland). Mineralogia Polonica, 20: 41-56.
  • 43. Piestrzyński, A., 1990. Uranium and thorium in the Kupferschiefer formation, Lower Zechstein, Poland. Mineralium Deposita, 25: 146-151.
  • 44. Quinby-Hunt, M.S., Wilde, P., Orth, C.J., Berry, W.B.N., 1989. Elemental geochemistry of blackshales-statistical comparison of low-calcic shales with other shales. U.S. Geological Survey Circular, 1037: 10-15.
  • 45. Radwański, S., 1955. Szczegółowa mapa geologiczna Sudetów 1:25 000, arkusz Radków (in Polish). Wyd. Geol., Warszawa.
  • 46. Schnug, E., Haneklaus, N., 2014. Uranium, the hidden treasure in phosphates. Procedia Engineering, 83: 265-269.
  • 47. Speczik, S., Bechtel, A., Sun, Y.Z., Püttmann, W., 1995. A stable isotope and organic geochemical study of the relationship between the Anthracosia shale and Kupferschiefer mineralization (SE Poland). Chemical Geology, 123: 133-151.
  • 48. Sun, Y.-Z., 1998. Influences of secondary oxidation and sulphide formation on several maturity parameters in Kupferschiefer. Organic Geochemistry, 29: 1419-1429.
  • 49. Sun, Y., Püttmann, W., 1997. Metal accumulation during and after deposition of the Kupferschiefer from the Sangerhausen Basin, Germany. Applied Geochemistry, 12: 577-592.
  • 50. Tásler, R., Čadková, Z., Dvořák, J., Fediuk, F., Chaloupský, J., Jetel, J., Kaiserová-Kalibová, M., Prouza, V., Schovánková-Hrdličková, D., Středa, J., Střida, M., Šetlik, A., 1979. Geology of the Czech part of the Intrasudetic Basin (in Czech with English summary). Ústředni Ústav Geologický, Praha.
  • 51. Teisseyre, A.K., 1975. Sedimentology and palaeogeography of the Kulm alluvial fans in the western Intrasudetic Basin (Central Sudetes, SW Poland). Geologia Sudetica, 9: 7-135.
  • 52. Tribovillard, N., Algeo, T.J., Lyons, T., Riboulleau, A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chemical Geology, 232: 12-32.
  • 53. Turekian, K.K., Wedepohl, K.H., 1961. Distribution of the elements in some major units of the Earth's crust. GSA Bulletin, 72: 175-192.
  • 54. Vine, J.D., Tourtelot, E.B., 1970. Geochemistry of black shale deposits, a summary report. Economic Geology, 65: 235-272.
  • 55. Więcław, D., 2016. Habitat and hydrocarbon potential of the Kimmeridgian strata in the central part of the Polish Lowlands. Geological Quarterly, 60 (1): 192-210.
  • 56. Wołkowicz, S., 1988. On the sedimentation of the Lower Permian Walchia Shales from Ratno Dolne (lntra-Sudetic Depression) (in Polish with English summary). Przegląd Geologiczny, 36: 214-218.
  • 57. Wołkowicz, S., 1990. Uranium enrichment in the Permian organic-rich Walchia shale, Intra-Sudetic Depression, southwestern Poland. IAS Special Publications, 11: 217-224.
  • 58. Wołkowicz, S., 1992. Genesis of uranium mineralization in Lower Permian Walchia shale (Intra-Sudetic Depression) and its facies context (in Polish with English summary). Przegląd Geologiczny, 40: 212-216.
  • 59. Wójcik-Tabol, P., 2015. Depositional redox conditions of the Grybów Succession (Oligocene, Polish Carpathians) in the light of petrological and geochemical indices. Geological Quarterly, 59 (4): 603-614.
  • 60. Yawanarajah, S.R., Kruge, M.A., Mastalerz, M., Śliwiński, W., 1993. Organic geochemistry of Permian organic-rich sediments from the Sudetes area, SW Poland. Organic Geochemistry, 20: 267-281.
  • 61. Zhou, C., Jiang, S.-Y., 2009. Palaeoceanographic redox environments for the lower Cambrian Hetang Formation in South China: evidence from pyrite framboids, redox sensitive trace elements, and sponge biota occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 271: 279-286.
  • 62. Zhou, L., Wignall, P.B., Su, J., Feng, Q., Xie, S., Zhao, L., Huang, J., 2012. U/Mo ratios and δ98/95Mo as local and global redox proxies during mass extinction events. Chemical Geology, 324-325: 99-107.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8ad1960-e7c8-43be-b66e-0e5cac917fe1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.