PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of a commercial high resistance bridge and methods to improve its precision

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
At the National Institute of Metrological Research (INRIM) an evaluation of a commercial dual source high resistance bridge has been performed. Its two main measurement modes (single measurements and multiple measurements) have been investigated. The best settle time of a 10:1 measurement of high resistance ratio has been estimated to be about three times the time constant of the circuit involving the resistors. This constant, in turn, depends on the highest value resistor. By means of mathematical estimators, suitable numbers of the readings of the detector have been established in order to minimize noises. A compatibility test at 100 TΩ has shown that the best precision of the commercial bridge is achieved utilizing the multiple measurements mode with the auto update function. This mode also allows the characterization of a resistor as a function of the settle time. This characterization can be useful for the owner of the resistor who can request the laboratory to perform the calibration of the resistor with the settle time which is necessary for him.
Rocznik
Strony
701--718
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
autor
  • National Institute of Metrological Research, Applied Metrology and Engineering Department, Str. delle Cacce 91, 10135 Turin, Italy
  • National Institute of Metrological Research, Applied Metrology and Engineering Department, Str. delle Cacce 91, 10135 Turin, Italy
  • National Institute of Metrological Research, Applied Metrology and Engineering Department, Str. delle Cacce 91, 10135 Turin, Italy
Bibliografia
  • [1] Henderson, L. C. (1987). A new technique for the automatic measurement of high value resistors. Journal of Physics E: Scientific Instruments, 20(5), 492. https://doi.org/10.1088/0022-3735/20/5/002
  • [2] Jarrett, D. G. (1997). Automated guarded bridge for calibration of multimegohm standard resistors from 1 MΩ to 1 TΩ. IEEE Transactions on Instrumentation and Measurement, 46(2), 325-328. https://doi.org/10.1109/19.571848
  • [3] Schumacher, B., Pesel, E., & Warnecke, P. (1999). Traceability of high-value resistance measurements at PTB. Proceedings of the 9th International Metrology Conference, France.
  • [4] Galliana, F., & Boella, G. (2000). The electrical DC resistance scale from 100 kΩ to 1 TΩ at IEN. IEEE Transactions on Instrumentation and Measurement, 49(5) 959-964. https://doi.org/10.1109/19.872914
  • [5] Jarrett, D. G. (2001). Analysis of a dual-balance high-resistance bridge at 10 TΩ. IEEE Transactions on Instrumentation and Measurement, 50(2), 249-254. https://doi.org/10.1109/19.918114
  • [6] Galliana, F., Capra, P. P., & Gasparotto, E. (2009). Metrological management of the high dc resistance scale at INRIM. Measurement, 42(2), 314-321. https://doi.org/10.1016/j.measurement.2008.07.002
  • [7] Galliana, F., Capra, P. P., & Gasparotto, E. (2011). Evaluation of Two Alternative Methods to Calibrate Ultrahigh Value Resistors at INRiM. IEEE Transactions on Instrumentation and Measurement, 60 (3), 965-970. https://doi.org/10.1109/TIM.2010.2060226
  • [8] Rietveld, G., & van der Beek, J. H. N. (2013). High-Ohmic Resistance Bridge with Voltage and Current Null Detection. IEEE Transactions on Instrumentation and Measurement, 62(5), 1760-1765. https://doi.org/10.1109/TIM.2013.2250171
  • [9] Jeckelmann, B., van der Beek, J. H. N., Capra, P. P., Chrobok, P., Cirneanu, L., Dudek, E., & Vrabcek, P. (2013). Final report on supplementary comparison EURAMET. EM-S32: Comparison of resistance standards at 1 TΩ and 100 TΩ. Metrologia, 50(1A), 01008. https://doi.org/10.1088/0026-1394/50/1A/01008
  • [10] Dziuba, R. F., & Jarrett, D. G. (2002). Final report on key comparison CCEMK2 of resistance standards at 10 MΩ and 1 GΩ. Metrologia, 39(1A). https://doi.org/10.1088/0026-1394/39/1A/1
  • [11] Jarrett, D. G., Payagala, S. U., Kraft, M. E., & Yu, K. M. (2016, July). Third generation of adapted wheatstone bridge for high resistance measurements at NIST. In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016) (pp. 1-2). IEEE. https://doi.org/10.1109/CPEM.2016.7540782
  • [12] Yu, K. M., Jarrett, D. G., Rigosi, A. F., Payagala, S. U., & Kraft, M. E. (2019). Comparison of Multiple Methods for Obtaining PΩ Resistances With Low Uncertainties. IEEE Transactions on Instrumentation and Measurement, 69(5), 3729-3738. https://doi.org/10.1109/TIM.2019.2941036
  • [13] Measurement International. (2013). Automated dual source high resistance bridge model 6600A [Operator manual, rev. 2].
  • [14] Keithley Instruments, Inc. (2003). Model 6514 System Electrometer Instruction Manual [4th rev].
  • [15] Keithley Instruments, Inc. (2008). Model 6517B System Electrometer User’s Manual [rev. A].
  • [16] Measurement International. (2019). Automated dual source high resistance bridge model 6600A [Operator manual, rev. 5].
  • [17] Galliana, F., Capra, P. P., & Gasparotto, E. (2015). Evaluation of the measurement capabilities of an high performance commercial high resistance bridge by means of the comparison with two validated high resistance measurement methods. In 17th International Congress of Metrology (p. 10001). EDP Sciences. https://doi.org/10.1051/metrology/20150010001
  • [18] Galliana, F., Capra, P. P., & Mihai, I. (2020). Measurement comparison between a commercial high resistance bridge and validated systems at ultra-high resistance values. In 24th IMEKO TC4 International Symposium 22nd International Workshop on ADC and DAC Modelling and Testing IMEKO TC-4 2020 (pp. 379-383).
  • [19] Allan D. W. (1987). Should the classical variance be used as a basic measure in standards metrology? IEEE Transactions on Instrumentation and Measurement, IM-36(2), 646-654. https://doi.org/10.1109/TIM.1987.6312761
  • [20] Witt, T. J. (2001). Using the Allan variance and power spectral density to characterize DC nanovoltmeters. IEEE Transactions on Instrumentation and Measurement, 50(2), 445-448. https://doi.org/10.1109/19.918162
  • [21] Mihai, I., & Reedtz, G. M. (2002, June). Optimisation of a potentiometric measurement system by calculation of the Allan variance. In Conference Digest Conference on Precision Electromagnetic Measurements (pp. 48-49). IEEE. https://doi.org/10.1109/CPEM.2002.1034713
  • [22] Mihai, I., & Reedtz, G. M. (2001). Using spectral analysis and Allan variance to characterize a potentiometric measurement system. Proceedings Conference Celebrating the 50𝑡 ℎ anniversary of the Romanian National Institute of Metrology, Bucharest, Romania (pp. 555-560).
  • [23] Fletcher, N., & Witt, T. J. (2008, June). Some applications of times series analysis techniques to coaxial AC bridges. In 2008 Conference on Precision Electromagnetic Measurements Digest (pp. 344-345). IEEE. https://doi.org/10.1109/CPEM.2008.4574794
  • [24] Hamilton Technical Services. (2008). Stable32 User Manual. http://www.stable32.com/
  • [25] Joint Committee for Guides in Metrology. (2008). Evaluation of measurement data - Guide to the expression of uncertainty in measurement (JCGM 100:2008). http://www.bipm.org/utils/common/documents/jcgm/JCGM_100_2008_E.pdf
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8a899c2-11b9-45d6-ab31-6679f6537600
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.