Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Industrial Internet of Things (IIoT) is a rapidly growing field, where interconnected devices and systems are used to improve operational efficiency and productivity. However, the extensive connectivity and data exchange in the IIoT environment make it vulnerable to cyberattacks. Intrusion detection systems (IDS) are used to monitor IIoT networks and identify potential security breaches. Feature selection is an essential step in the IDS process, as it can reduce computational complexity and improve the accuracy of the system. In this research paper, we propose a hybrid feature selection approach for intrusion detection in the IIoT environment using Shapley values and a genetic algorithm-based automated preprocessing technique which has three automated steps including imputation, scaling and feature selection. Shapley values are used to evaluate the importance of features, while the genetic algorithm-based automated preprocessing technique optimizes feature selection. We evaluate the proposed approach on a publicly available dataset and compare its performance with existing state-of-the-art methods. The experimental results demonstrate that the proposed approach outperforms existing methods, achieving high accuracy, precision, recall, and F1-score. The proposed approach has the potential to enhance the performance of IDS in the IIoT environment and improve the overall security of critical industrial systems.
Wydawca
Rocznik
Tom
Strony
120--135
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- ATASAREN, National Defence University, Konaklar, Yenilevent, Org. İzzettin Aksalur Cd., 34334 Beşiktaş, Istanbul, Turkey
- Siemens Corporate Technology, Esentepe, Yakacık Yolu No:111, 34870 Kartal, Istanbul, Turkey
autor
- Department of Computer Engineering, National Defence University, Air Force Academy, Istanbul, Turkey
Bibliografia
- 1. R. Vinayakumar, M. Alazab, K.P. Soman, P. Poornachandran, A. Al-Nemrat, S. Venkatraman, Deep Learning Approach for Intelligent Intrusion Detection System, IEEE Access, 7, 41525-41550, 2019.
- 2. D.P. Hostiadi, Y.P. Atmojo, R.R. Huizen, I.M.D. Susila, G.A. Pradipta, I.M. Liandana, A New Approach Feature Selection for Intrusion Detection System Using Correlation Analysis, International Conference on Cybernetics and Intelligent System (ICORIS), Prapat, Indonesia, 2022.
- 3. V. Ravindranath, S. Ramasamy, R. Somula, K.S. Sahoo, A.H. Gandomi, Swarm Intelligence Based Feature Selection for Intrusion and Detection System in Cloud Infrastructure, IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 2020.
- 4. T. Janarthanan and S. Zargari, Feature selection in UNSW-NB15 and KDDCUP’99 datasets, International Symposium on Industrial Electronics (ISIE), Edinburgh, UK, 2017.
- 5. A. Saber, M. Abbas, B. Fergani, Two-dimensional Intrusion Detection System: A New Feature Selection Technique, International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH), Boumerdes, Algeria, 2021.
- 6. N. Sampath, M.A. Jerlin, L.B. Kritkika, A. Anitha, Intrusion Detection in Software Defined Networking using Genetic Algorithm, International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 2020.
- 7. O.D. Okey, D.C. Melgarejo, M. Saadi, R.L. Rosa, J.H. Kleinschmidt, D.Z. Rodriguez, Transfer Learning Approach to IDS on Cloud IoT Devices Using Optimized CNN, IEEE Access, 11, 1023-1038, 2023.
- 8. H. Aiods and P. Tomás, Neighborhood-aware autoencoder for missing value imputation, European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2020.
- 9. C. Yin, Y. Zhu, J. Fei i X. He, An Implementation of Intrusion Detection System Using Genetic Algorithm, IEEE Access, 5, 21954-21961, 2017.
- 10. M. Zolanvari, M.A. Teixeira, L. Gupta, K.M. Khan, R. Jain, Machine Learning-Based Network Vulnerability Analysis of Industrial Internet of Things, IEEE Internet of Things Journal, 6(4), 6822-6834, 2019.
- 11. V.D. Katkar and D.S. Bhatia, Lightweight approach for detection of denial of service attacks using numeric to binary preprocessing, International Conference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, India, 2014.
- 12. A. Telikani, J. Shen, J. Yang, P. Wang, Industrial IoT Intrusion Detection via Evolutionary Cost-Sensitive Learning and Fog Computing, IEEE Internet of Things Journal, 9(2), 23260-23271, 2022.
- 13. G.A. Da Silva Oliveira, P.S. Silva Lima, F. Kon, R. Terada, A stacked ensemble classifier for an intrusion detection system in the edge of IoT and IIoT Networks, IEEE Latin-American Conference on Communications (LATINCOM), Rio de Janeiro, Brazil, 2022.
- 14. A. Khacha, R. Saadouni, Y. Harbi, Z. Aliouat, Hybrid Deep Learning-based Intrusion Detection System for Industrial Internet of Things, International Symposium on Informatics and its Applications (ISIA), M’sila, Algeria, 2022.
- 15. A. Zainudin, R. Akter, D.S. Kim, J.M. Lee, Towards Lightweight Intrusion Identification in SDN-based Industrial Cyber-Physical Systems, Asia Pacific Conference on Communications (APCC), Jeju Island, Korea, Republic of, 2022.
- 16. H. Aidos and P. Tomás, Neighborhood-aware autoencoder for missing value imputation, European Signal Processing Conference (EUSIPCO), Amsterdam, Netherlands, 2021.
- 17. A. Heryanto, D. Stiawan, M.Y. Bin Idris, M.R. Bahari, A.A. Hafizin, R. Budiarto, Cyberattack feature selection using correlation-based feature selection method in an intrusion detection system, International Conference on Electrical Engineering, Computer Science and Informatics (EECSI), Jakarta, Indonesia, 2022.
- 18. M. Al-Hawawreh, E. Sitnikova, N. Aboutorab, X-IIoTID: A connectivity-agnostic and deviceagnostic intrusion data set for industrial internet of things, IEEE Internet of Things Journal, 9(5), 3962-3977, 2022.
- 19. M. Tavallaee, E. Bagheri, W. Lu, A.A. Ghorbani, A detailed analysis of the KDD CUP 99 data set, IEEE Symposium on Computational Intelligence for Security and Defense Applications, Ottawa, ON, Canada, 2009.
- 20. P.B. Udas, E. Karim, K.S. Roy, SPIDER: A shallow PCA based network intrusion detection system with enhanced recurrent neural networks, Journal of King Saud University - Computer and Information Sciences, 34(10), 10246-10272, 2022.
- 21. J. Ahmad, S.A. Shah, S. Latif, F. Ahmed, Z. Zou, N. Pitropakis, DRaNN_PSO: A deep random neural network with particle swarm optimization for intrusion detection in the industrial internet of things, Journal of King Saud University - Computer and Information Sciences, 34(10), 8112-8121, 2022.
- 22. M. Mazini, B. Shirazi, I. Mahdavi, Anomaly network-based intrusion detection system using a reliable hybrid artificial bee colony and Ada-Boost algorithms, Journal of King Saud University - Computer and Information Sciences, 31(4), 541-553, 2019.
- 23. S.T. Ikram and A.K. Cherukuri, Intrusion detection model using fusion of chi-square feature selection and multi class SVM, Journal of King Saud University – Computer and Information Sciences, 29(4), 462-472, 2017.
- 24. Almutairi YS, Alhazmi B, Munshi AA. Network intrusion detection using machine learning techniques. Advances in Science and Technology Research Journal. 2022; 16(3): 193-206.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8a5e44a-98ba-41dd-87e9-f1f5a8ec1172