PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Heterometaliczne kompleksy metali ziem rzadkich : synteza, badania strukturalne i zastosowania praktyczne w katalizie

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Heterometallic rare earth complexes - synthesis, structural studies, and practical applications in catalysis
Języki publikacji
PL
Abstrakty
EN
Over the past four decades, heterometallic rare-earth metal clusters have garnered significant attention due to their intriguing architectures and diverse applications across catalysis, polymer synthesis, and materials chemistry. Particular emphasis has been placed on heterometallic coordination compounds incorporating transition metal ions (e.g., MnII, MnIII, FeII, FeIII, CoII, NiII, CuII, ReIV, ReV), many of which exhibit single-molecule magnet (SMM) behavior. Such complexes are regarded as promising molecular materials for high-density data storage and components in spintronic and magnetic refrigeration devices. Additionally, these systems have shown potential as luminescent probes and sensors for environmental monitoring, safety applications, and explosive detection. Heterometallic 3d-4f complexes are also considered viable candidates for photocatalytic energy conversion processes, including water splitting and CO2 photoreduction. Rare-earth ions, characterized by their strong oxophilicity, high Lewis acidity, large coordination numbers, and flexible coordination geometries, demonstrate notable catalytic activity in various organic transformations. These include asymmetric synthesis, CO2 activation, and the polymerization of cyclic monomers. A distinct and growing area of application involves the use of heterometallic rare-earth complexes as molecular precursors for the fabrication of advanced functional materials, such as composites, glasses, and ceramics. This review aims to provide a comprehensive overview of the structural chemistry of heterometallic rare-earth clusters and how it governs their physical properties, reactivity, and catalytic performance.
Rocznik
Strony
1011--1041
Opis fizyczny
Bibliogr. 75 poz., wykr.
Twórcy
  • Wydział Chemiczny Politechniki Wrocławskiej, ul. Smoluchowskiego 23, 50-370 Wrocław
  • Wydział Chemiczny Politechniki Wrocławskiej, ul. Smoluchowskiego 23, 50-370 Wrocław
Bibliografia
  • [1] S.B. Castor, L.B Hedrick, Rare Earth Elements w J.E. Kogel, N.C. Trivedi, J.M. Barker, and S.T. Krukowski, ed., Industrial Minerals volume, 7th edition: Society for Mining, Metallurgy, and Exploration, Littleton, Colorado, United States, 2006, 769.
  • [2] F. Wall, w G. Gunn, ed., Critical Metals Handbook, John Wiley & Sons, Oxford, 2014, 312.
  • [3] F. Czerwiński, Mater. Sci. Technol. 2019, 36, 255.
  • [4] J. H. L. Voncken, The Rare Earth Elements, 2016.
  • [5] Z. Wang, Y. Guo, X. Gong, Y. Guo, Y. Wang, G. Lu, Chin. J. Catal. 2014, 35, 1238.
  • [6] B. S. Van Gosen, P. L. Verplanck, K. R. Long, J. Gambogi, R. R. Seal, The Rare-Earth Elements: Vital to Modern Technologies and Lifestyles. Fact Sheet / 2014.
  • [7] J. M. D. Coey, Engineering 2020, 6, 119.
  • [8] J. Lucas, P. Lucas, T. L. Mercier, A. Rollat, W. G. Davenport, Rare Earths in Rechargeable Batteries. In Elsevier eBooks 2015, 167.
  • [9] A. B. Seddon, Z. Tang, D. Furniss, S. Sujecki, T. M. Benson, Opt. Express 2010, 18, 26704.
  • [10] M. Vishnoi, Q. Murtaza, P. Kumar, Mater. Today: Proc. 2021, 44, 4053.
  • [11] V. Dubey, N. Dubey, M. M. Domanska, M. Jayasimhadri, S. J. Dhoble, Rare-Earth-Activated Phosphors: Chemistry and Applications Elsevier, 2022.
  • [12] Md. F. Hossain, M. H. Ahmed, I. Khan, Md. S. Miah, S. Hossain, ACS Appl. Electron. Mater. 2021, 3, 4255.
  • [13] M. K. Hossain, G. A. Raihan, M. A. Akbar, M. H. K. Rubel, M. H. Ahmed, I. Khan, S. Hossain, S. K. Sen, M. I. E. Jalal, A. El-Denglawey, ACS Appl. Electron. Mater. 2022, 4, 3327.
  • [14] Y. Lv, J. Willkomm, M. Leskes, A. Steiner, T. C. King, L. Gan, E. Reisner, P. T. Wood, D. S. Wright, Chem.-Eur.J. 2012, 18, 11867.
  • [15] Y. Lv, Z. Cai, D. Yan, C. Su, W. Li, W. Chen, Z. Ren, Y. Wei, O. Mi, C. Zhang, D. S. Wright, RSC Adv. 2016, 6, 57.
  • [16] Y. Lv, M. Yao, J. P. Holgado, T. Roth, A. Steiner, L. Gan, L. M. Lambert, D. S. Wright, RSC Adv. 2013, 3, 13659.
  • [17] Y. Lv, W. Du, Y. Ren, Z. Cai, K. Yu, C. Zhang, Z. Chen, D. S. Wright, Inorg. Chem. Front. 2016, 3, 1119.
  • [18] C. Artner, S. Kronister, M. Czakler, U. Schubert, Eur. J. Inorg. Chem. 2014, 2014, 5596.
  • [19] K. Mashima, A. Nakamura, J. Chem. Soc. Dalton Trans. 1999, 22, 3899.
  • [20] G. B. Deacon, S. Hamidi, P. C. Junk, R. L. Kelly, J. Wang, Eur. J. Inorg. Chem. 2013, 2014, 460.
  • [21] R. Petrus, A. Kowaliński, J. Utko, K. Matuszak, T. Lis, P. Sobota, Inorg. Chem. 2023, 62, 2197.
  • [22] R. Petrus, K. Chomiak, J. Utko, A. Bieńko, T. Lis, P. Sobota, Inorg. Chem. 2020, 59, 16545.
  • [23] M. Botta, U. Casellato, C. Scalco, S. Tamburini, P. Tomasin, P. A. Vigato, S. Aime, A. Barge, Chem.-Eur.J. 2002, 8, 3917.
  • [24] X. Xu, M. Ma, Y. Yao, Y. Zhang, Q.Shen, Eur. J. Inorg. Chem. 2005, 2005, 676.
  • [25] Z.-P. Zheng, Y.-J. Ou, X. Hong, L.-M. Wei, L.-T. Wan, W. Zhou, Q.-G. Zhan, Y. Cai, Inorg. Chem. 2014, 53, 9625.
  • [26] Y. Song, K. Yin, Y. Chen, B. Zhao, Y. Zhang, X. Zhu, D. Yuan, Y. Yao, Chi. J. Chem. 2023, 41, 805.
  • [27] A. Kowaliński, R. Petrus, K. Chomiak, T. Lis, Appl. Organomet. Chem., 2025, 39, e70017.
  • [28] N. H, Q. Yamagiwa, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2005, 127, 13419.
  • [29] N. Yoshikawa, N. Kumagai, S. Matsunaga, G. Moll, T. Ohshima, T. Suzuki, M. Shibasaki, J. Am. Chem. Soc. 2001, 123, 2466.
  • [30] S. Y. Tosaki, K. Hara, V. Gnanadesikan, H. Morimoto, S. Harada, M. Sugita, N. Yamagiwa, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2006, 128, 11776.
  • [31] H. Kakei, T. Sone, Y. Sohtome, S. Matsunaga, M. Shibasaki, J. Am. Chem. Soc. 2007, 129, 13410.
  • [32] V. Gnanadesikan, Y. Horiuchi, T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2004, 126, 7782.
  • [33] J. Tian, N. Yamagiwa, S. Matsunaga, M. Shibasaki, Angew. Chem. Int. Ed.2002, 41, 3636.
  • [34] J. R. Robinson, C. H. Booth, P. J. Carroll, P. J. Walsh, E. J. Schelter, Chem.-Eur.J. 2013, 19, 5996.
  • [35] K. Yamada, S. J. Harwood, H. Gröger, M. Shibasaki, Angew. Chem. Int. Ed.1999, 38, 3504.
  • [36] J. R. Robinson, P. J. Carroll, P. J. Walsh, E. J. Schelter, Organometallics 2013, 32, 1493.
  • [37] M. Shibasaki, N. Yoshikawa, Chem. Rev. 2002, 102, 2187.
  • [38] I. Nieto, A. J. Wooten, J. R. Robinson, P. J. Carroll, E. J. Schelter, P. J. Walsh, Organometallics 2013, 32, 7431.
  • [39] Q. Yuan, S. Zhou, X. Zhu, Y. Wei, S. Wang, X. Mu, F. Yao, G. Zhang, Z. Chen, New. J. Chem. 2015, 39, 7626.
  • [40] B. Ramirez, C. C. Lu, J. Am. Chem. Soc. 2020, 142, 5396.
  • [41] T. Yang, A. R. Silva, L. Fu, F. Shi, Dalton Trans. 2015, 44, 13745.
  • [42] M. H. Chisholm, Pure Appl. Chem. 2010, 82, 1647.
  • [43] R. Petrus, J. Utko, P. Sobota, Wiad. Chem. 2021, 75, 1.
  • [44] H. Sheng, J. Shi, Y. Feng, H. Wang, Y. Jiao, H. Sheng, Y. Zhang, Q. Shen, Dalton Trans. 2012, 41, 9232.
  • [45] K. C. Hultzsch, T. P. Spaniol, J. Okuda, Organometallics 1997, 16, 4845.
  • [46] L. F. Sánchez-Barba, D. L. Hughes, S. M. Humphrey, M. Bochmann, Organometallics 2006, 25, 1012.
  • [47] E. M. Broderick, P. S. Thuy‐Boun, N. Guo, C. Vogel, J. Sutter, J. T. Miller, K. Meyer, P. L. Diaconescu, Inorg. Chem. 2011, 50, 2870.
  • [48] E. M. Broderick, N. Guo, T. Wu, C. Vogel, C. Xu, J. Sutter, J. T. Miller, K. Meyer, T. Cantat, P. L. Diaconescu, Chem. Comm. 2011, 47, 9897.
  • [49] E. M. Broderick, N. Guo, C. Vogel, C. Xu, J. Sutter, J. T. Miller, K. Meyer, P. Mehrkhodavandi, P. L. J. Diaconescu, Am. Chem. Soc. 2011, 133, 9278.
  • [50] W. J. Jin, L. Ding, Z. Chu, L. Chen, X. Lü, X. Zheng, J. Song, D. Fan, J. Mol. Catal. A Chem. 2011, 337, 25.
  • [51] T. Yang, A. R. Silva, F. Shi, Dalton Trans. 2013, 42, 13997.
  • [52] P. Cancino, V. Paredes-Garcı́a, J. Torres, S. Martínez, C. Kremer, E. Spodine, Catal. Sci. Technol. 2017, 7, 4929.
  • [53] P. Gabrielli, M. Gazzani, M. Mazzotti, Ind. Eng. Chem. Res. 2020, 59, 7033.
  • [54] S. Bierbaumer, M. Nattermann, L. Schulz, R. Zschoche, T. J. Erb, C.K. Winkler, M. Tinzl, S. M. Glueck. Chem. Rev. 2023, 123, 5702.
  • [55] X. Xin, H. Shan, T. Tian, Y. Wang, D. Yuan, H. You, Y. Yao, ACS Sustain. Chem. Eng. 2020, 8, 13185.
  • [56] L. Wang, C. Xu, Q. Han, X. Tang, P. Zhou, R. Zhang, G. Gao, B. Xu, W. Qin, W. Liu, Chem. Comm. 2018, 54, 2212.
  • [57] K. Yin, L. Hua, L. Qu, Q. Yao, Y. Wang, D. Yuan, H. You, Y. Yao, Dalton Trans. 2021, 50, 1453.
  • [58] L. Qu, I. Del Rosal, Q. Li, Y. Wang, D. Yuan, Y. Yao, L. Maron, J. CO2 Util. 2019, 33, 413.
  • [59] G. Gao, L. Wang, R. Zhang, C. Xu, H. Yang, W. Liu, Dalton Trans. 2019, 48, 3941.
  • [60] R. Zhang, L. Wang, C. Xu, H. Yang, W. Chen, G. Gao, W. Liu, Dalton Trans. 2018, 47, 7159.
  • [61] L. Hua, B. Li, C.-T. Han, P. Gao, Y. Wang, D. Yuan, Y. Yao, Inorg. Chem. 2019, 58, 8775.
  • [62] H. Nguyen, Y. B. N. Tran, T. C. Nguyen, F. Gándara, P. L. T. Nguyen, Inorg. Chem. 2018, 57, 13772.
  • [63] Q. Wang, C. Lu, B. Zhao, Y. Yao, Eur. J. Org. Chem. 2016, 2016, 14, 2555.
  • [64] H. Cheng, B. Zhao, Y. Yao, C. Lu, Green Chem. 2015, 17, 1675.
  • [65] G. A. Bhat, D. J. Darensbourg, Green Chem. 2022, 24, 5007.
  • [66] B. Grignard, S. Gennen, C. Jérôme, A. W. Kleij, C. Detrembleur, Chem. Soc. Rev. 2019, 48, 4466.
  • [67] D. J. Darensbourg, Chem. Rev. 2007, 107, 2388.
  • [68] J. Qin, B. Xu, Y. Zhang, D. Yuan, Y. Yao, Green Chem. 2016, 18, 4270.
  • [69] R. Xu, L. Hua, X. Li, Y. Yao, X. Leng, Y. Chen, Dalton Trans. 2019, 48, 10565.
  • [70] H. Nagae, R. Aoki, S. Akutagawa, J. Kleemann, R. Tagawa, T. Schindler, G. Choi, T. P. Spaniol, H. Tsurugi, J. Okuda, K. Mashima, Angew. Chem. Int. Ed. 2018, 57, 2492.
  • [71] H. Asaba, T. Iwasaki, M. Hatazawa, J. Deng, H. Nagae, K. Mashima, K. Nozaki, Inorg. Chem. 2020, 59, 7928.
  • [72] W.-P. Chen, P.-Q. Liao, P.-B. Jin, L. Zhang, B.-K. Ling, S.-C. Wang, Y.-T. Chan, X.-M. Chen, Y.-Z. Zheng, J. Am. Chem. Soc. 2020, 142, 4663.
  • [73] R. Chen, C.-L. Chen, M.-H. Du, X. Wang, C. Wang, L.-S. Long, X.-J. Kong, L.-S. Zheng, Chem. Commun. 2021, 57, 3611.
  • [74] F. Evangelisti, R. Moré, F. Hodel, S. Luber, G. R. Patzke, J. Am. Chem. Soc. 2015, 137, 11076.
  • [75] R. Chen, G.-L. Zhuang, Z.-Y. Wang, Y.-J. Gao, Z. Li, C. Wang, Y. Zhou, M.-H. Du, S. Zeng, L.-S. Long, X.-J. Kong, L.-S. Zheng, Nat. Sci. Rev. 2021, 8: nwaa234.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8a5be59-2ba7-48b1-9046-c780bcc6c28b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.