PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Hybrid white light emitting devices (HWLEDs) from organic polymer and PbS nanocrystals by multiple excitons

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hybrid white light-emitting devices (HWLEDs) were fabricated using FTO/PEDOT: PSS/PbS/Alq3/Ni system and synthesized by phase separation process. In the present study, the multiple excitons generation in lead sulfide (PbS) NCs, which is characteristic of PbS NCs, was used to induce an effective and regulated energy transfer to an HWLED. The HWLED consisted of three layers successively deposited on FTO glass substrate; the first layer consisted of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) blended with polymethyl methacrylate (PMMA) organic polymer in the 1:1 ratio, while the second layer consisted of PbS NCs. Finally, above the layer of the PbS NCs, Tris (8-hydroxyquinoline) aluminum (Alq3) layer was deposited. The white light was generated with quite a good efficiency due to the confinement effect that makes the energy gap greater. The characteristics of the current-voltage (I-V) indicate acceptable conditions for the generation of white light by multiple excitons. It was found that the emission levels able to produce white luminescence, classified based on the coordinate system of chromaticity (CIE 1931), are x = 0.31, y = 0.33 while the correlated color temperature (CCT) is about 6250 K. The HWLEDs made from PbS NCs with hole injection from the organic polymer (PEDOT: PSS with PMMA), and electron injection from organic molecules (Alq3) are capable of white light generation.
Słowa kluczowe
EN
organic devices   HWLEDs   PbS   PEDOT   PSS   Alq3  
Wydawca
Rocznik
Strony
693--698
Opis fizyczny
Bibliogr. 29 poz., rys.
Twórcy
  • Medical Physics, College of Science, Al Karkh University of Science, Iraq
Bibliografia
  • [1] YANQIN M., XIAOZHEN W., LONG G., KEXIANG W., BO Z., ZHONGQIANG W., BIN Z., HUA W., YUCHENG W., BINGSHE X., Nanophotonics, 8 (2019), 1783.
  • [2] EKATERINA N., JULIA F., SANDRA G., Adv. Funct. Mater., (2020), 1.
  • [3] AKEEL M. K., NHC, 29 (2020), 2297.
  • [4] DAEKYUNG K., MAREDDI B. K., CHANGHEE S., HONGSIK P., JONGHOO P., Appl. Sci., 9 (2019), 1.
  • [5] ASHOUR M., MOHAMED R., MOHAMED S., RSC Adv., 10, (2020), 14458.
  • [6] VANESSA W., VLADIMIR B., Nano Rev., 1 (2010), 5202.
  • [7] PHILIPPE B., ZIQI L., MARK W., J. Phys. Chem. Lett., 10 (2019), 5897.
  • [8] AKEEL M.K., JMNM, 29 (2017), 2297.
  • [9] XIAO P., HUANG J., YICONG Y., BAIQUAN L., Molecules, 24 (2019), 1.
  • [10] TZU-MING L., JOAO C., TOMASZ L., ARTUR B., CHIH-CHIA H., NPG Asia Mater., 8 (2016), 295.
  • [11] DO Y., TZUNG-HAN L., JAE W., JESSE R., FRANKY S., Sci. Rep., 4 (2015), 1.
  • [12] YUE M., YU Z., WILLIAM W., J. Mater. Chem. C, 7 (2019), 13662.
  • [13] XIULEI S., SONG C., MENG-YAO L., BIAO H., GUOZHEN Z., RAN C., MINGXI Z., Nano Res., 13 (2020), 2239.
  • [14] KROUPA D.M., PACH G.F., VÖRÖS M., GIBERTI F., CHERNOMORDIK B.D., CRISP R.W., NOZIK A.J., JOHNSON J.C., SINGH R., KLIMOV V.I., GALLI G., BEARD M.C., ACS Nano, 12 (2018), 10084.
  • [15] SMITH C., BINKS D., Nanomaterials, 4 (2014), 19.
  • [16] KERSHAW S.V., ROGACH A.L., Materials, 10 (9) (2017), 1095.
  • [17] SO-YEON P., YOUNGHOON K., SOHEE J., DONG H., GILL S., HYUN S., Chem. Phys. Chem., 20 (2019), 2657.
  • [18] CHEN Q., MARCO DE N., YANG Y., SONG T., CHEN C., ZHAO H., HONG Z., ZHOU H., YANG Y., Nano Today, 10 (2015), 355.
  • [19] ZHANG F., LU H., TONG J., BERRY J. J., BEARD M. C., ZHU K., Energy Environ. Sci., 13 (2020), 1154.
  • [20] WU J., CHEN S., ACS Appl. Mater. Interfaces, 10 (2018), 4851.
  • [21] XU J., MIAO Y., ZHENG J., WANG H., YANG Y., LIU X., Nanoscale, 10 (2018), 11211.
  • [22] SHI H., DENG L., CHEN S., XU Y., ZHAO X., CHENG F., HUANG W., AIP Adv., 4 (2014), 047110.
  • [23] NISHIHARA T., TAHARA H., OKANO M., ONO M., KANEMITSU Y., J. Phys. Chem. Lett., 8 (2015), 1327.
  • [24] YANG Y., RODRIGUEZ-CORDOBA W., LIAN T., Nano Lett., 12 (2012), 4235.
  • [25] CUNNINGHAM P.D., BOERCKER J.E., FOOS E E., LUMB M.P., SMITH A.R., TISCHLER J.G., MELINGER J.S., Nano Lett., 11 (2011), 3476.
  • [26] CUNNINGHAM P.D., BOERCKER J.E., FOOS E E., LUMB M.P., SMITH A.R., TISCHLER J.G., MELINGER J.S., Sci. Rep., 5 (2015), 1.
  • [27] CAO W., ZHANG Z., PATTERSON R., LIN Y., WEN X., VEETIL B.P., ZHANG P., ZHANG Q., SHRESTHA S., CONIBEER G., HUANG S., RSC Adv., 6 (2016), 90846.
  • [28] ARTHUR D., Color Res. Appl., 29 (2004), 267.
  • [29] LI C., MELGOSA C., RUAN X., ZHANG Y., MA L., XIAO K. LUO M.R., Opt. Soc. Am., 24 (2016), 13.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8a57d8c-5de0-4a62-a1fa-b88f74b32073
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.