Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Zmiany mikrostrukturalne w wysokomanganowej stali austenitycznej Fe-Mn-Al-C
Języki publikacji
Abstrakty
Microstructural changes in the age-hardenable Fe-28wt.%Mn-9wt.%Al-1wt.%C steel during ageing at 550°C for various times have been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The steel was produced in an induction furnace and the ingot, after homogenization at 1150°C for 3 hours under a protective argon atmosphere, was hot-rolled and subsequently cold-rolled up to 23% reduction. The sheet was then aged at 550°C for various times in an argon atmosphere and cooled in air. XRD analysis and TEM observations revealed a modulated structure and superlattice reflections produced by spinodal decomposition, which occurred during ageing at 550°C. Theexistence of satellites suggests that either (Fe, Mn)3AlCx carbides were formed within the austenite matrix by spinodal decomposition during cooling or chemical fluctuactions occurred between the (Fe, Mn)3AlCx carbides and the austenitic matrix.
W pracy analizowano zmiany mikrostruktury w stali Fe-28%wt. Mn-9%wt. Al-1%wt.C zachodzące podczas starzenia w temperaturze 550°C w różnych czasach. Stal Fe-28Mn-9Al-1C wytopiono w próżniowym piecu indukcyjnym. Po odlaniu wlewek homogenizowano w temperaturze 1150°C przez 3 godziny w atmosferze argonu. Wlewek walcowano na gorąco a następnie na zimno do 23 % odkształcenia. Próbki po odkształceniu starzono w temperaturze 550°C dla różnych czasów w atmosferze argonu i chłodzono na powietrzu. Obserwacje elektronomikroskopowe starzonej stali Fe-28Mn-9Al-1C ujawniły modulowaną strukturę i refleksy od nadstruktury, co było efektem rozpadu spinodalnego, który miał miejsce podczas procesu starzenia. Występowanie satelitów na zapisach dyfrakcyjnych sugeruje, że węgliki (Fe, Mn)3AlCx powstały w osnowie austenitycznej na skutek rozpadu spinodalnego zachodzącego podczas chłodzenia czy fluktuacji chemicznych występujących pomiędzy węglikami Fe, Mn)3AlCx i osnową austenityczną.
Wydawca
Czasopismo
Rocznik
Tom
Strony
971--975
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Metals Engineering and Industrial Computer Science, Al. A. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] G. Frommeyer, U. Brüx, P. Neumann, Supra-ductile and high-strengh manganes-TRIP/TWIP steels for high energy absorption purposes, ISIJ International, 43, 438-446 (2003).
- [2] S. Allain, J. P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Correlation between the calculated stacking fault energy and the plasticity mechanism in Fe-Mn-C alloys, Mater. Sc. and Eng. A387-389, 158-162 (2004).
- [3] O. Grässel, L. Krüger, G. Frommeyer, L. Meyer, High strength Fe-Mn(Al, Si) TRIP/TWIP steels development-properties-application, Inter. Jour. of Plast. 16, 1391-1409 (2000).
- [4] G. Frommeyer, U. Brüx, Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels, Steel Research Int. 77, 627-633 (2006).
- [5] L. A. Dobrzański, A. Grajcar, W. Borek, Microstructure evolution and phase composition of high-manganese austenitic steels, Journal of Achievements in Materials and Manufacturing Engineering 31, 218-225 (2008).
- [6] J. Kowalska, W. Ratuszek, M. Witkowska, A. Zielińska-Lipiec, Influence of cold plastic deformation on the development of the texture in high-manganese austenitic steel, Solid State Phenomena 203-204, 115-120 (2013).
- [7] A. Ziewiec, E. Tasak, K. Ziewiec, K. Formowicz, Mechanical properties and microstructure of dissimilar material welded joint, Arch. Metall. Mater. 59, 915 (2014).
- [8] W. K. Choo, J. H. Kim, J. C. Yoon, Microstructural change in austenitic Fe-30.0wt%Mn-7.8wt%Al-1, 3wt%C initiated by spinodal decomposition and its influence on mechanical properties, Acta Mater. 45, 4877-4885 (1997).
- [9] K. Sato, K. Tagawa, Y. Inoue, Modulated structure and magnetic properties of age-hardenable Fe-Mn-Al-C alloys, Metal. Trans. A 21A, 5-11 (1990).
- [10] K. Sato, K. Tagawa, Y. Inoue, Age hargdening of an Fe-30Mn-9Al-0.9C alloy by spinodal decomposition, Scripta Mater. 22, 899-902 (1988).
- [11] C. S. Wang, C. N. Hwang, C. G. Chao, T. F. Liu, Phase transitions in an Fe-9Al-30Mn-2.0C alloy, Scripta Mater. 57, 809-812 (2007).
- [12] I. S. Kalashnikov, O. Acselrad, A. Shalkevich, L. D. Chumakova, L. C. Pereira, Heat treatment and thermal stability of FeMnAlC alloys, J. Mater. Proc. Techn. 136, 72-79 (2003).
- [13] C. Y. Chao, C. H. Liu, Effects of Mn contents on the microstructure and mechanical properties of the Fe-10Al-xMn-1.0C alloy, Mater. Trans. 43, 2635-2642 (2002).
- [14] C. L. Lin, C. G. Chao, H. Y. Bor, T. F. Liu, Relationship between microstructures and tensile properties of an Fe-30Mn-8.5Al-2.0C alloy, Mater. Trans. 51, 1084-1088 (2010).
- [15] K. H. Han, W. K. Choo, Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys, Metal. Trans. A 20A, 205-214 (1989).
- [16] K. Choi, C. H. Seo, H. Lee, S. K. Kim, J. H. Kwak, K. G. Chin, K. T. Park, N. J. Kim, Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel, Scripta Mater 63, 1028-1031 (2010).
- [17] C. Y. Chao, T. F. Liu, Phase transformations in an Fe-7.8Al-29.5Mn-1.5Si-1.05C alloy, Metal. Trans. A 24A, 1957-1963 (1993).
- [18] K. Sato, K. Tagawa, Y. Inoue, Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-930wt.%Al-0.930wt.%C alloy, Mater. Sci. Eng. A111, 45-50 (1989).
- [19] G. Tsay, Y. Tuan, C. Lin, C. Chao, T. Liu, Effect of carbon on spinodal decomposition in Fe-26Mn-20Al-C alloys, Mater. Trans. 52, 521-525 (2011).
- [20] Y. H. Tuan, C. L. Lin, C. G. Chao, T. F. Liu, Grain boundary precipitation in Fe-30Mn-9Al-5Cr-0.7C alloy, Mater. Trans. 49, 1589-1593 (2008).
- [21] C. N. Hwang, C. Y. Chao, T. F. Liu, Grain boundary precipitation an Fe-8.0Al-31.5Mn-1.05C alloy, Scripta Mater. 28, 263-268 (1993).
- [22] C. Y. Chao, C. N. Hwang, T. F. Liu, Grain boundary precipitation an Fe-7.8Al-31.7Mn-0.54C alloy, Scripta Mater. 28, 109-114 (1993).
- [23] H. Springer, D. Raabe, Rapid alloy prototyping: Compositional and thermo-mechanical high throughput bulk combinatorial design of structural materials based on the example of 30Mn-1.2C-xAl triplex steels, Acta Mater. 60, 4950-4959 (2012).
- [24] J. Kowalska, W. Ratuszek, M. Witkowska, A. Zielińska-Lipiec, Development of mi-crostructure and texture in Fe-26Mn-3Si-3Al alloy during cold-rolling and annealing, J. Alloys Comp. in press, http://dx.doi.org/10.1016/j.jallcom.2013.12.059
- [25] B. Mikułowski, R. Zapała, J. Głownia, P. Wilk, Structure and properties of the centrifugally cast high-alloyed (25Cr35NiNbTi) steel after long-time operation in steam reforming. Arch. Metall. Mater. 58, 785-790 (2013).
- [26] V. Daniel, H. Lipson, An X-ray study of the dissociation of an alloy of copper, iron and nickel, Proc. Roy. Soc. 181, 368-378 (1943).
- [27] J. W. Lee, T. F. Liu, Phase transformations in an Fe-8Al-30Mn-1.5Si-1.5C alloy, Mater. Chem. and Phys. 69, 192-198 (2001).
- [28] C. C. Wu, J. S. Chou, T. F. Liu, Phase transformation in an Fe-10.1Al-28.6Mn-0.46C alloy, Metal. Trans A 22A, 2265-2276 (1991).
- [29] K. H. Han, K. C. Woong, Phase decomposition of rapidly solidified Fe-Mn-Al-C austenitic alloys, Metal. Trans A 20A, 205-214 (1989).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8a4ac83-2d7a-4c36-9c7a-67f844eb44be