Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Sustainable irrigation practices are critical for addressing the challenges of water scarcity and food insecurity in the face of climate change and growing global food demand. This study investigated the potential of precision irrigation (PI), deficit irrigation (DI), and drip irrigation (DRI) techniques to enhance crop productivity and water use efficiency (WUE) compared to conventional flood irrigation (CFI) in three distinct agroecological zones of Iraq. Field experiments were conducted using a randomised complete block design with wheat, maize, and rice crops. The results demonstrated that PI significantly increased crop growth parameters, grain yield, and WUE across all zones, with yield improvements of 33-38% and WUE increases of 46-51% in contrast with CFI. The DI and DRI treatments also outperformed CFI, albeit to a lesser extent. Remote sensing-derived vegetation indices strongly correlated with crop growth parameters and yield, while hydrological modelling revealed reduced evapotranspiration and surface runoff under the PI treatment. The sustainable irrigation practices resulted in substantial water savings of 20-30% compared to CFI. These findings highlight the importance of adopting efficient irrigation techniques, along with a holistic approach encompassing technological innovations, capacity building, and stakeholder engagement, to promote water-efficient agriculture and ensure food security in water-scarce regions.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
130--136
Opis fizyczny
Bibliogr. 35 poz., tab., wykr.
Twórcy
autor
- Universitas Sarjanawiyata Tamansiswa, Post graduate school, Jl. Batikan, UH-III Jl. Tuntungan No. 1043, Tahunan, Kec. Umbulharjo, Daerah Istimewa Yogyakarta 55167, Indonesia
autor
- Universitas Muhammadiyah Makassar, Department of Civil Engineering, kampus Unismuh Makassar, Gedung Iqra lt3 FT. Jl. Sultan Alauddin no. 259, Makassar, Indonesia
autor
- Universitas Negeri Semarang, Department of Sociology and Anthropology Education, Gedung C. 6 FISIP, Sekaran, Gunungpati, Semarang, Indonesia
autor
- Research Center for Politics - National Research and Innovation Agency, Jalan Gatot Subroto, No 10, 12710, Jakarta Selatan, Indonesia
autor
- Universitas Mathla’ul Anwar, Faculty of Sciences, Pharmacy and Health, Jalan Raya Labuan KM 23 Cikaliung, Sindanghayu, Kec. Saketi, Kabupaten Pandeglang, Banten 42273, Indonesia
autor
- Islamic University, Medical Laboratory Technique College, 2975+9RM, Najaf, Iraq
- Islamic University of Al Diwaniyah, Medical Laboratory Technique College, Al Diwaniyah, Iraq
- Islamic University of Babylon, Medical Laboratory Technique College, Babylon, Iraq
Bibliografia
- Aawar, T. and Khare, D. (2020) “Assessment of climate change impacts on streamflow through hydrological model using SWAT model: a case study of Afghanistan,” Modeling Earth Systems and Environment, 6(3), pp. 1427–1437. Available at: https://doi.org/10.1007/s40808-020-00759-0.
- Abioye, E.A. et al. (2020) “A review on monitoring and advanced control strategies for precision irrigation,” Computers and Electronics in Agriculture, 173, 105441. Available at: https://doi.org/10.1016/j.compag.2020.105441.
- Ambomsa, A. (2020) “Role of drip irrigation system as increasing water use efficiency over furrow irrigation system,” Academic Research Journal of Agricultural Science and Research, 8(3), pp. 252–262.
- Attia, A. et al. (2021) “Evaluating deficit irrigation scheduling strategies to improve yield and water productivity of maize in arid environment using simulation,” Agricultural Water Management, 249, 106812. Available at: https://doi.org/10.1016/j.agwat.2021.106812.
- Ayubirad, M.S., and Ataei, S. (2024) “An efficient modal parameter identification method based on free vibration response and the energy sorted matrix pencil method,” IJRARE, 11 (1), pp. 15–27. Available at: http://dx.doi.org/10.22068/ijrare.349.
- Ayubirad, M.S., Ataei, S., and Tajali, M. (2024) “Numerical model updating and validation of a truss railway bridge considering train-track-bridge interaction dynamics,” Shock and Vibration, 2024(1), 4469500. Available at: https://doi.org/10.1155/2024/4469500.
- Batool M. et al. (2023) “Drought stress in Brassica napus: Effects, tolerance mechanisms, and management strategies,” Journal of Plant Growth Regulation, 42(1), pp. 21–45. Available at: https://doi.org/10.1007/s00344-021-10542-9.
- Cai, J. et al. (2007) “Estimating reference evapotranspiration with the FAO Penman–Monteith equation using daily weather forecast messages,” Agricultural and Forest Meteorology, 145(1–2), pp. 22–35. Available at: https://doi.org/10.1016/j.agrformet.2007.04.012.
- Canton, H. (2021) “Food and Agriculture Organization of the United Nations – FAO,” in The Europa directory of international organizations 2021. London: Routledge, pp. 297–305.
- Chen, T.-C., Hsieh, T.-S. and Shichiyakh, R.A. (2021) “Sustainable operation of surface-groundwater conjunctive use systems in the agricultural sector,” Journal of Water and Land Development, 51, pp. 25–29. Available at: https://doi.org/10.24425/jwld.2021.139011.
- Dwijendra, N.K.A. et al. (2022) “The effect of various irrigation technologies and strategies on water resources management,” Journal of Water and Land Development, 53, pp. 143–147. Available at: https://doi.org/10.24425/jwld.2022.140790.
- Freitas de, R.M. et al. (2019) “Water use of cowpea under deficit irrigation and cultivation systems in semi-arid region,” Revista Brasileira de Engenharia Agrícola e Ambiental, 23, pp. 271–276. Available at: https://doi.org/10.1590/1807-1929/agriambi.v23n4p271-276.
- Galindo, A. et al. (2018) “Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems,” Agricultural Water Management, 202, pp. 311–324. Available at: https://doi.org/10.1016/j.agwat.2017.08.015.
- Goldstein, A. et al. (2018) “Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge,” Precision Agriculture, 19, pp. 421–444. Available at: https://doi.org/10.1007/s11119-017-9527-4.
- Gu, Z. et al. (2020) “Irrigation scheduling approaches and applications: A review,” Journal of Irrigation and Drainage Engineering, 146(6), 04020007. Available at: https://doi.org/10.1061/(ASCE)IR.1943-4774.0001464.
- Kumar, N. et al. (2023) “Resource conserving mechanization technologies for dryland agriculture,” in A. Naorem and D. Machiwal (eds.) Enhancing resilience of dryland agriculture under changing climate. Singapore: Springer Nature Singapore, pp. 657–688. Available at: https://doi.org/10.1007/978-981-19-9159-2_33.
- Liu, M. et al. (2022) “Optimal irrigation levels can improve maize growth, yield, and water use efficiency under drip irrigation in northwest China,” Water, 14(23), 3822. Available at: https://doi.org/10.3390/w14233822.
- Marimuthu, S. et al. (2024) “Harnessing rain hose technology for water-saving sustainable irrigation and enhancing blackgram productivity in garden land,” Scientific Reports, 14(1), 18692. Available at: https://doi.org/10.1038/s41598-024-69655-2.
- Nhemachena, C. et al. (2020) “Climate change impacts on water and agriculture sectors in Southern Africa: Threats and opportunities for sustainable development,” Water, 12(10), 2673. Available at: https://doi.org/10.3390/w12102673.
- Patel, A. et al. (2023) “Advances in micro-irrigation practices for improving water use efficiency in dryland agriculture,” in A. Naorem and D. Machiwal (eds.) Enhancing resilience of dryland agriculture under changing climate. Singapore: Springer Nature Singapore, pp. 157–176. Available at: https://doi.org/10.1007/978-981-19-9159-2_10.
- Plett, D.C. et al. (2020) “The intersection of nitrogen nutrition and water use in plants: New paths toward improved crop productivity,” Journal of Experimental Botany, 71(15), pp. 4452–4468.
- Schmitt, R.J.P., Rosa, L. and Daily, G.C. (2022) “Global expansion of sustainable irrigation limited by water storage,” Proceedings of the National Academy of Sciences, 119(47), e2214291119. Available at: https://doi.org/10.1073/pnas.2214291119.
- Sharma, V. et al. (2023) “Climatological approaches of irrigation scheduling for growing tomato crop under drip irrigation in sub-tropical region of Punjab,” Journal of Agrometeorology, 25(4), pp. 565–570. Available at: https://doi.org/10.54386/jam.v25i4.2269.
- Singh, H.P. and Singh, B. (2021) “Innovative approaches for enhancing water productivity in agriculture including horticulture,” International Journal of Innovative Horticulture, 10(2), pp. 115–129.
- Skibko, Z. et al. (2022) “Electricity supply to irrigation systems for crops away from urban areas,” Journal of Water and Land Development, 53, pp. 73–79. Available at: https://doi.org/10.24425/jwld.2022.140782.
- Suna, T. et al. (2023) “Enhancing agricultural water productivity using deficit irrigation practices in water-scarce regions,” in A. Naorem and D. Machiwal (eds.) Enhancing resilience of dryland agriculture under changing climate. Singapore: Springer Nature Singapore, pp. 177–206. Available at: https://doi.org/10.1007/978-981-19-9159-2_11.
- Tiwari, A.K. et al. (2023) “Sustainable water management in agriculture: irrigation techniques and water conservation,” in M. Bauah et al. (eds.) Research trends in agriculture science Vol. II. Kolhapur, India: Bhumi Publishing, pp. 53–68.
- Wang, H. et al. (2021) “Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation,” Agricultural Water Management, 245, 106662. Available at: https://doi.org/10.1016/j.agwat.2020.106662.
- Wrachien de, D., Schultz, B. and Goli, M.B. (2021) “Impacts of population growth and climate change on food production and irrigation and drainage needs: A world-wide view,” Irrigation and Drainage, 70(5), pp. 981–995. Available at: https://doi.org/10.1002/ird.2597.
- Yin, X. et al. (2022) “An interplay of soil salinization and groundwater degradation threatening coexistence of oasis-desert ecosystems,” Science of The Total Environment, 806, 150599. Available at: https://doi.org/10.1016/j.scitotenv.2021.150599.
- Zagaria, C. et al. (2023) “Potential for land and water management adaptations in Mediterranean croplands under climate change,” Agricultural Systems, 205, 103586. Available at: https://doi.org/10.1016/j.agsy.2022.103586.
- Zapata-García, S. et al. (2023) “Using soil water status sensors to optimize water and nutrient use in melon under semi-arid conditions,” Agronomy, 13(10), 2652. Available at: https://doi.org/10.3390/agronomy13102652.
- Zhang, D. et al. (2020). “Water scarcity and sustainability in an emerging economy: A management perspective for future,” Sustainability, 13(1), 144. Available at: https://doi.org/10.3390/su13010144.
- Zhang, T. et al. (2021) “Comparison of different irrigation methods to synergistically improve maize’s yield, water productivity and economic benefits in an arid irrigation area,” Agricultural Water Management, 243, 106497. Available at: https://doi.org/10.1016/j.agwat.2020.106497.
- Zinkernagel, J. et al. (2020) “New technologies and practical approaches to improve irrigation management of open field vegetable crops,” Agricultural Water Management, 242, 106404. Available at: https://doi.org/10.1016/j.agwat.2020.106404.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8a34108-e0a2-4f9e-972a-b393f60fca96
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.