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Abstract: This research endeavour-investigates the enhanced adaptation of the Laplace-based variational iteration method (VIM) tailored 
specifically for tackling the Duffing Equation. This is accomplished by incorporating the Lagrange multiplier as a strategic tool to effectively 
address the inherent natural frequency within the Duffing Equation. Using a meticulous comparative analysis, here are juxtapose the ana-
lytical outcomes generated by the modified VIM approach with the numerical solution obtained through the application of the renowned 
Runge-Kutta Fehlberg method (RKF45), implemented by using the powerful mathematical software, MAPLE. Furthermore, by exploring the 
profound influence of diverse initial conditions on the resulting solution, a diverse array of distinct graphical representations is presented.  
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1. INTRODUCTION 

In the 1990s, many mathematicians work to solve the dribbled 
flow in fractional derivatives and nonlinear differential equations 
[1-3] and they introduced a method that is known as the variation-
al iterative method (VIM) and now in recent times VIM has been 
applied immensely as an important mathematical tool for solving 
nonlinear differential equations in various field of sciences (for 
instance, visit [4-10]). For linear problems, the Lagrange multiplier 
is identified and used to obtain the exact solution with single 
iteration. 

This method is very desired in the directory of techniques for 
nonlinear models and high summons record articles that are 
concerned with the “Variational iterative method” which has been 
into account. Also, this method is more reliable and effective than 
other existing strategies, for example, the Adomian decomposition 
and perturbation method etc. The other benefits of VIM are that 
we can reduce the measurements of computation and still main-
tain the precision of the numerical solution. However, the strength 
of this technique is the ability to handle a large group of analytical 
applications as well as numerical applications in real-life prob-
lems. The Integral Transform-based VIM (ITVIM) is a mathemati-
cal technique that combines the variational iteration method (VIM) 
with integral transforms, such as the Laplace transform, to solve 
differential equations. This hybrid approach leverages the ad-
vantages of both methods, allowing for the efficient solution of a 
wide range of differential equations, including ordinary differential 
equations (ODEs) and partial differential equations (PDEs). The 
Laplace transform-based VIM offers a robust approach for solving 
a wide array of differential equations, providing researchers and 
engineers with a valuable tool for understanding and analysing 
dynamic systems in different fields. 

The main concern of this method is about nonlinear oscillators 
like Fangzhu Oscillators [11], lowfrequency property of fractal 

vibration model [12], microelectro mechanical system oscillators 
[13, 14] time-fractional problems [15, 16] etc. The VIM was modi-
fied with the help of Laplace transformation by Rehman et al. [17]. 
In this work the nonlinear differential equation is solved by using 
the method, known as the Modified VIM (MVIM) and periodic 
solution is obtained. The MVIM retains an approximate solution for 
each time level. The tactics MVIM identify incontestable use and 
the Lagrange multiplier is so easy to handle than that of Variation-
al principle [18-22]. We assume a nonlinear oscillator that is ex-
pressed by equation: 

𝑦′′(𝑡) + 𝑓(𝑦) = 0,                                                (1) 

with following initial conditions 

𝑦(0) = 𝐴,                𝑦′(0) = 0. 

We can write Eq. (1) as 

𝑦′′ + 𝜔2(𝑦) + 𝑟(𝑦) = 0,                                                   (2) 

where ω is unknown frequency,  

𝑟(𝑦) = 𝑓(𝑦) − 𝜔2𝑦,                                                            (3) 

and inVIM, for the Eq. (2)  the convolution is given by [23] and 
known as the correction functional which is 

𝑣𝑛+1(𝑡) = 𝑣𝑛(𝑡) + ∫ 𝜂(𝑡, 𝜉)[𝑣′′
𝑛(𝜉) + 𝜔2𝑣𝑛(𝜉) +

𝑡

0

𝑟̃(𝑣𝑛)]𝑑𝜉, 𝑛 = 0,1,2,3, …                                                    (4) 

In the above expression the general Lagrange multiplier is η, 

and by using VIM [24-27] with respect to vn, it can be alternatively 

calculated by stabilizing the conditions of Eq. (4). The symbol n 
represents the nth approximation of the solution and r̃ denotes 

the restricted variation. By assembling stabilised vn(t), the con-

volution will give the value of η . Now we obtain a relationship 
between amplitude and angular frequency and we incorporate 
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Laplace transform in the well-known VIM. Then we will apply this 
method on the equations arising from Duffing equation. Applying 
MVIM to the Duffing equation offers valuable insights into the 
behaviour of nonlinear systems, including understanding complex 
dynamics, resonance phenomena, bifurcation analysis; and sensi-
tivity to system parameters. These implications are not only im-
portant for theoretical understanding but also have practical appli-
cations in engineering and related fields. The Duffing equation is a 
nonlinear second-order differential equation frequently used to 
model the behaviour of various physical systems, including me-
chanical, electrical, and biological systems. It was named after the 
German engineer and physicist Georg Duffing, who extensively 
studied this equation in the early 20th century. In mechanical 
engineering, it describes the behaviour of certain mechanical 
systems, such as a nonlinear oscillator with cubic stiffness. In 
electrical engineering, it represents the response of certain elec-
tronic circuits to external inputs. Moreover, it has been applied in 
biology to model the dynamics of biological systems, such as the 
motion of the human heart under certain conditions. Studying the 
Duffing equation and its solutions provides valuable insights into 
the behavior of nonlinear systems and help to use them in various 
scientific and engineering disciplines. 

The generalized Duffing Equation is defined by Petrova [28] 
and given as: 

𝑠′′(𝑡) + 𝛿𝑠′(𝑡) + 𝛼𝑠(𝑡) + 𝛽𝑠3(𝑡) = 𝜑(𝑡),                       (5) 

where α, β and δ are positive constants and φ(t) is a well-known 
function. 

The above equation is a nonlinear second-order differential 
equation. If β = 0, then this equation will reduce to linear equa-
tion. The Duffing equation shows the chaotic nonlinear behaviour 

of dynamical system. If β > 0  the equation denotes a rigid 
springs and if β < 0, the equation denotes the smooth springs 
and, in this case the phase portrait will be closed [29]. The many 
terms from the qualitative theory of ODE can be easily illustrated 
by using the Eq.(5) i.e. limit cycle [30] and chaotic behaviour.  Tao 
et al. [31] introduced a promising method for solving fractional 
differential equations by combining the homotopy perturbation 
method with the Aboodh transform. This innovative hybrid tech-
nique offers a straightforward way to obtain an approximate solu-
tion, which converges rapidly to the exact solution, requiring min-
imal computational effort.  

Anjum and He [32] proposed a simplified method utilising the 
Laplace transform to calculate the multiplier, thereby making this 
approach accessible to researchers dealing with diverse nonlinear 
problems.  Anjum et al. [33] explored the Elzaki transform, a 
modified version of the Laplace transform known for its effective-
ness in dealing with nonlinear oscillators. The study demonstrated 
that a single iteration using this transform results in a highly accu-
rate solution, highlighting its practical utility for researchers. In this 
paper we will solve by taking a special case of Duffing equation 
and applying the MVIM on this equation. 

2. APPLICATIONS OF MVIM TO DUFFING EQUATION 

Problem 1: Firstly, we take δ = 0, α = 0  and φ(t) = 0 in 
Eq. (5) of Duffing equation, 

𝑠′′ + 𝑠3 = 0,   𝑤ℎ𝑒𝑛   𝑠(0) = 𝐴, 𝑠′ (0)   = 0.                    (6)                      

This equation represents the Duffing oscillator. In order to 
solve the Duffing equation, with the help of Laplace transform 

inVIM, we will consider the nonlinear oscillator form 

𝑠′′ + 𝜔2𝑠3 + 𝑔(𝑠) = 0 ,                                                     (7) 

where     g(s) = (1 − ω2)s3. 

Consider the correctional formula for VIM 

ℒ[𝑣𝑛+1(𝑡)] = ℒ[𝑣𝑛(𝑡)] − ℒ ∫
1

𝜔

𝑡

0
sin 𝜔(𝑡 − 𝜉) (𝑣𝑛

′′(𝜉) +

𝜔2𝑣3
𝑛(𝜉) + 𝑔(𝑣𝑛))𝑑𝜉,                                                      (8) 

and now by using convolution for the Laplace transformation, we 
get 

ℒ[𝑠𝑛+1(𝑡)] = ℒ[𝑠𝑛(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠′′

𝑛 + 𝜔2𝑠3
𝑛 +

𝑔(𝑠𝑛)].                                                                                (9) 

By substituting the value of g(sn), we have 

ℒ[𝑠𝑛+1(𝑡)] = ℒ[𝑠𝑛(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠𝑛

′′ +

𝜔2𝑠3
𝑛 + (1 − 𝜔2)𝑠𝑛

3,                                      (10) 

ℒ[𝑠𝑛+1(𝑡)] = ℒ[𝑠𝑛(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠𝑛

′′ +

𝑠𝑛
3].                                                                   (11) 

Use trail function s0(t) = A cos wt,  then the Eq. (11) be-

comes, when n = 0, 

ℒ[𝑠1(𝑡)] = ℒ[𝑠0(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠0

′′ + 𝑠0
3].            (12) 

By substituting the value of s0(t) = A cos ωt, and s0
′′(t) =

−Aω2 cos ωt, we get, 

ℒ[𝑠1(𝑡)] = ℒ[𝐴 cos 𝜔𝑡] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[−𝐴𝜔2 cos 𝜔𝑡 +

𝐴3 cos 𝜔𝑡3],                                                                       (13) 

ℒ[𝑠1(𝑡)] = ℒ[𝐴 cos 𝜔𝑡] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[−𝐴𝜔2 cos 𝜔𝑡 +

𝐴3

4
(cos 3𝜔𝑡 + 3 cos 𝜔𝑡)].                                                 (14) 

By solving the above, we have following equation 

ℒ[𝑠1(𝑡)] =

ℒ[𝐴 cos 𝜔𝑡] + [𝐴𝜔 −
3𝐴3

4𝜔
] ℒ [sin 𝜔𝑡]ℒ[cos 𝜔𝑡] −

𝐴3

4𝜔
ℒ [sin 𝜔𝑡]ℒ[cos 3𝜔𝑡].                                          (15) 

Now apply the inverse Laplace transform, the first order ap-

proximate solution is of the form 

𝑠1(𝑡) = [𝐴 cos 𝜔𝑡] + [𝐴𝜔 −
3𝐴3

4𝜔
] [

1

2
t sin 𝜔𝑡] −

𝐴3

4𝜔
[

1

8𝜔
(cos 𝜔𝑡 − cos 3𝜔𝑡)],                                      (16) 

𝑠1(𝑡) =

𝐴 cos 𝜔𝑡 + [𝐴𝜔 −
3𝐴3

4𝜔
] [

1

2
t sin 𝜔𝑡] −

𝐴3

4𝜔
[

1

8𝜔
(cos 𝜔𝑡 −

cos 3𝜔𝑡)].                                                                         (17) 

In the above, the second term is a secular term because it in-

creases in amplitude with time, so avoiding the secular term in 

approximate solution requires that 
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𝐴𝜔 −
3𝐴3

4𝜔
= 0, 

𝜔2 =
3

4
𝐴2, 

𝜔 = √
3

4
𝐴.                                                                          (18) 

The above expression of angular frequency is same as is ob-
tained by the first-order Hamiltonian approach, second-order 
Hamiltonian approach and third-order Hamiltonian approach in 
Eq.(2) by Yildirim et al. [34]. So periodic solution in this case 
becomes same as that of first-order Hamiltonian approach, sec-
ond-order Hamiltonian approach and third-order Hamiltonian 
approach while approximate solution is 

𝑠1(𝑡) = 𝐴 cos −
𝐴3

4𝜔
[

1

8𝜔
(cos 𝜔𝑡 − cos 3𝜔𝑡)] .                  (19) 

Problem 2: We will take  φ(t) = f0 cos ωt  in Eq. (5). This 
leads to a new case of Duffing equation, 

𝑠′′(𝑡) + 𝛿𝑠′(𝑡) + 𝛼𝑠(𝑡) + 𝛽𝑠3(𝑡) =

𝑓0 𝑐𝑜𝑠 𝜔𝑡 ,    𝑤ℎ𝑒𝑛    𝑠(0) = 𝐴,  𝑠′ (0) = 0 .                       (20) 

This equation represents the Duffing oscillator. In order to 
solve Duffing equation, by making Laplace transform in VIM, we 
will consider the nonlinear oscillator form 

𝑠′′ + 𝜔2𝑠 + 𝑔(𝑠) = 0,                                                           (21) 

where   

𝑔(𝑠) = 𝛿𝑠′(𝑡) + 𝛼𝑠(𝑡) + 𝛽𝑠3(𝑡) − 𝑓0 𝑐𝑜𝑠 𝜔𝑡 − 𝜔2𝑠.  

Consider the correctional formula for VIM 

ℒ[𝑣𝑛+1(𝑡)] = ℒ[𝑣𝑛(𝑡)] − ℒ ∫
1

𝜔

𝑡

0
sin 𝜔(𝑡 − 𝜉) (𝑣𝑛

′′(𝜉) +

𝜔2𝑣𝑛(𝜉) + 𝑔(𝑣𝑛))𝑑𝜉.                                                       (22) 

Now by using convolution for the Laplace transformation, we 
get 

ℒ[𝑠𝑛+1(𝑡)] = ℒ[𝑠𝑛(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠𝑛

′′(𝑡) + 𝜔2𝑠𝑛 +

𝑔(𝑠𝑛)].                                                                               (23) 

By substituting the value of g(sn), we have 

ℒ[𝑠𝑛+1(𝑡)] = 

ℒ[𝑠𝑛(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠𝑛

′′(𝑡) + 𝜔2𝑠𝑛 + 𝛿𝑠′(𝑡) +

𝛼𝑠(𝑡) + 𝛽𝑠3(𝑡) − 𝑓0 cos 𝜔𝑡                                             (24) 

ℒ[𝑠𝑛+1(𝑡)] = ℒ[𝑠𝑛(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠𝑛

′′(𝑡) +

𝛿𝑠𝑛
′(𝑡) + 𝛼𝑠𝑛(𝑡) + 𝛽𝑠𝑛

3(𝑡) − 𝑓0 cos 𝜔𝑡].                      (25) 

Using the trail function s0(t) = A cos ωt, and when n = 0, 
the above equation becomes 

ℒ[𝑠1(𝑡)] = ℒ[𝑠0(𝑡)] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[𝑠0

′′(𝑡) + 𝛽𝑠0
3(𝑡) +

𝛿𝑠0
′(𝑡) + 𝛼𝑠0(𝑡) − 𝑓0 cos 𝜔𝑡].                                        (26) 

By substituting the value of s0(t) = A cos ωt,  s0
′ (t) =

−Aω sin ωt, and s0
′′(t) = −Aω2 cos ωt, we get, 

ℒ[𝑠1(𝑡)] = ℒ[𝐴 cos 𝜔𝑡] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[−𝐴𝜔2 cos 𝜔𝑡 +

𝛼𝐴 cos 𝜔𝑡 − 𝛿𝐴𝜔 sin 𝜔𝑡 + 𝛽𝐴3 cos 𝜔𝑡3 − 𝑓0 cos 𝜔𝑡],    (27) 

ℒ[𝑠1(𝑡)] = ℒ[𝐴 cos 𝜔𝑡] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[−𝐴𝜔2 cos 𝜔𝑡 +

𝛼𝐴 cos 𝜔𝑡 − 𝛿𝐴𝜔 sin 𝜔𝑡 +
𝛽𝐴3

4
𝑐𝑜𝑠 3𝜔𝑡 +

3𝛽𝐴3

4
𝑐𝑜𝑠 𝜔𝑡 −

𝑓0 cos 𝜔𝑡],                                                                         (28) 

ℒ[𝑠1(𝑡)] = ℒ[𝐴 cos 𝜔𝑡] −
1

𝜔
ℒ [sin 𝜔𝑡]ℒ[(−𝐴𝜔2 + 𝛼𝐴 +

3𝛽𝐴3

4
− 𝑓0) 𝑐𝑜𝑠 𝜔𝑡 − 𝛿𝐴𝜔 sin 𝜔𝑡 +

𝛽𝐴3

4
𝑐𝑜𝑠 3𝜔𝑡],             (29) 

and by solving these, obtain following equation 

ℒ[𝑠1(𝑡)] = ℒ[𝐴 cos 𝜔𝑡] −
1

𝜔
(−𝐴𝜔2 + 𝛼𝐴 +

3𝛽𝐴3

4
−

𝑓0) ℒ [sin 𝜔𝑡]ℒ[cos 𝜔𝑡] − 𝛿𝐴ℒ [sin 𝜔𝑡]ℒ[sin 𝜔𝑡] −

𝛽𝐴3

4𝜔
ℒ [sin 𝜔𝑡]ℒ[cos 3𝜔𝑡].                                                 (30) 

Applying the inverse Laplace transform, the formulation for the 
first order approximate solution is 

𝑠1(𝑡) =

𝐴 cos 𝜔𝑡 −
1

𝜔
(−𝐴𝜔2 + 𝛼𝐴 +

3𝛽𝐴3

4
− 𝑓0) (

1

2
𝑡 sin 𝜔𝑡) −

𝛿𝐴

2𝜔
(sin 𝜔𝑡 − 𝑡𝜔 cos 3𝜔𝑡) −

𝛽𝐴3

4𝜔
(

1

8𝜔
(cos 𝜔𝑡 −

cos 3𝜔𝑡)),                                                                              (31) 

𝑠1(𝑡) =

𝐴 cos 𝜔𝑡 −
1

𝜔
(−𝐴𝜔2 + 𝛼𝐴 +

3𝛽𝐴3

4
− 𝑓0) (

1

2
𝑡 sin 𝜔𝑡) −

𝛿𝐴

2𝜔
sin 𝜔𝑡 +

𝛿𝐴

2𝜔
𝑡𝜔 cos 3𝜔𝑡 −

𝛽𝐴3

4𝜔
(

1

8𝜔
(cos 𝜔𝑡 −

cos 3𝜔𝑡)).                                                                             (32) 

In this, the second term is a secular term because it increases 
in amplitude with time, and so avoiding the secular term in approx-
imate solution requires that 

−
1

𝜔
(−𝐴𝜔2 + 𝛼𝐴 +

3𝛽𝐴3

4
− 𝑓0) = 0,  

𝐴𝜔2 − 𝛼𝐴 −
3𝛽𝐴3

4
+ 𝑓0 = 0,  

𝐴𝜔2 = 𝛼𝐴 +
3𝛽𝐴3

4
− 𝑓0,  

𝜔2 = 𝛼 +
3𝛽𝐴2

4
−

𝑓0

𝐴
,  

𝜔 = √𝛼 +
3𝛽𝐴2

4
−

𝑓0

𝐴
.                                                           (33) 

The above expression shows the angular frequency of the 
system using the periodic solution approach while approximate 
solution is 

𝑠1(𝑡) = 𝐴 cos 𝜔𝑡 −
𝛿𝐴

2𝜔
sin 𝜔𝑡 −

𝛽𝐴3

4𝜔
[

1

8𝜔
(cos 𝜔𝑡 −

cos 3𝜔𝑡)].                                                                        (34) 
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3. RESULT AND DISCUSSION OF PROBLEM 1 

In this problem, we take a Duffing Equation with a special 
case to obtain analytical solution by modified VIM and now we will 
compare our results with the numerical method that is Runge-
Kutta Fehlberg method (RKF45). The Figs. 1, 2 and 3 show the 
comparison between analytical solutions obtained by MVIM and 
numerical solutions by RKF45 whichconforms the validity of 
MVIM: 

 
Fig. 1.   Comparison between VIM with Laplace and RKF45 for A = 0.01.              

RKF45, Runge-KuttaFehlberg method: VIM, Variational iteration 
method. 

In this session, we have characterised the error analysis of the 

analytical solution by MVIM and numerical solution by RKF45. In 

Tab. 1, error term E1 conforms the validity of the solution by 

MVIM. 

Tab. 1. Error analysis for problem 

        Time 

steps 
RKF45 MVIM E1 

1. 0.00999999500495420 0.009999996250 0.000000000622523 

2. 0.00999998001985614 0.009999985000 0.00000000249007 

3. 0.00999995504478561 0.009999966250 0.00000000560261 

4. 0.00999992007985009 0.009999940000 0.00000000996007 

5. 0.00999987512518472 0.009999906250 0.0000000155624 

6. 0.00999982018095232 0.009999865000 0.0000000224095 

7. 0.00999975524734341 0.009999816251 0.0000000305018 

8. 0.00999968032457617 0.009999760001 0.0000000398382 

9. 0.00999959541289647 0.009999696252 0.0000000504196 

10. 0.00999950051257784 0.009999625002 0.0000000622447 

MVIM, modified Variational iteration method; RKF45, Runge-

Kutta Fehlberg  method. 

 
Fig. 2.   Comparison between VIM with Laplace and RKF45 for A = 0.1. 

RKF45, Runge-Kutta Fehlberg method; VIM, Variational iteration 
method. 

In this session, we have characterised the error analysis of the 

analytical solution by MVIM and numerical solution by RKF45. In 

Tab. 2, error term Error E2 again conforms the validity of the 

solution by MVIM. 

Tab. 2. Error analysis for problem 

T      Time 

steps 
RKF45 MVIM E2 

1. 0.0999950010279834 0.09999625002 0.000000624496 

2. 0.0999800056260519 0.09998500037 0.00000249737 

3. 0.0999550182421241 0.09996625190 0.00000561683 

4. 0.0999200462264396 0.09994000600 0.00000997989 

5. 0.0998750998315593 0.09990626465 0.0000155824 

6. 0.0998201922123647 0.09986503037 0.0000224191 

7. 0.0997553394260590 0.09981630627 0.0000304834 

8. 0.0996805604321661 0.09976009598 0.0000397678 

9. 0.0995958770925311 0.09969640374 0.0000502633 

10. 0.0995013141713202 0.09962523432 0.0000619601 

MVIM, modified Variational iteration method; RKF45, Runge-

Kutta Fehlberg  method. 

 
Fig. 3.   Comparison between, VIM with Laplace and RKF45 for A = 1. 

RKF45, Runge-Kutta Fehlberg method; VIM, Variational iterative 
method. 
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In this session, we have characterised the error analysis of the 

analytical solution by MVIM and numerical solution by RKF45. In 

Tab. 3, error term E3 again conforms the validity of the solution by 

MVIM. 

Tab. 3. Error analysis for problem 

Time 

steps 
RKF45 MVIM E3 

1. 0.995012463963846 0.9962523432 0.00061994 

2. 0.980197633634482 0.9850374625 0.002419914 

3. 0.955985874143270 0.9664394171 0.005226771 

4. 0.923053269838254 0.9405976051 0.008772168 

5. 0.882266426229066 0.9077057190 0.012719646 

6. 0.834616758953844 0.8680102938 0.016696767 

7. 0.781152682325995 0.8218088592 0.020328088 

8. 0.722917072594592 0.7694477095 0.023265318 

9. 0.660895283270746 0.7113193077 0.025212012 

10. 0.595976638587752 0.6478593447 0.025941353 

MVIM, modified Variational iteration method; RKF45, Runge-

Kutta Fehlberg  method. 

4. RESULT AND DISCUSSION OF PROLEM 2 

In this problem, we consider a Duffing Equation with a special 

case to obtain analytical solution by MVIM and the results are 

compared with the numerical method that is RKF45.  

 
Fig. 4.   Comparison between, VIM with Laplace and RKF45 for A = 0.1. 

RKF45, Runge-Kutta Fehlberg method; VIM, Variational iterative 
method. 

The Figs. 4, 5 and 6 show the comparison between analytical 

solutions obtained by MVIM and numerical solution by RKF45 

which conforms the validity of MVIM. MVIMs, including the La-

place-based variant, offer a flexible and powerful approach to 

solving a wide range of differential equations. However, users 

should be aware of its limitations and the specific characteristics 

of the problems they intend to solve. Additionally, it’s important to 

stay updated with the latest research in this field, as ongoing 

developments might address some of the current limitations  

[35-37].  

Note that we have characterised the error analysis of the ana-

lytical solution by MVIM and numerical solution by RKF45 in this 

session. In Tab. 4, error term E4 conforms the validity of the 

solution by MVIM. 

Tab. 4. Error analysis for problem 

Time 

steps 
RKF45 MVIM E4 

1. 0.090647789 0.090647651 0.000000068965 

2. 0.064339347 0.064339933 0.00000002931 

3. 0.025999877 0.025997625 0.000000112601 

4. -0.01720434 -0.017207461 0.00000156036 

5. -0.05719678 -0.057193943 0.00000141875 

6. -0.086484702 -0.08648247 0.00000111599 

7. -0.099596785 -0.099594713 0.00000103591 

8. -0.094045679 -0.094078066 0.0000161936 

9. -0.070989376 -0.070964401 0.0000124876 

10. -0.034789867 -0.034577059 0.000106404 

MVIM, modified Variational iteration method; RKF45, Runge-

Kutta Fehlberg  method. 

 
Fig. 5.   Comparison between, VIM with Laplace and RKF45 for A = 0.01. 

RKF45, Runge-Kutta Fehlberg method; VIM, Variational iterative 
method. 

In this part, we have characterised the error analysis of the 

analytical solution by MVIM and numerical solution by RKF45. In 

Tab. 5, error term Error E5 again conforms the validity of the 

solution by MVIM. 
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Tab. 5. Error analysis for problem 

Time 

steps 
RKF45 MVIM E5 

1. 0.001594365 0.001594392 0.0000000136765 

2. -0.009491547 -0.009491583 0.0000000179675 

3. -0.004621835 -0.004621054 0.000000390476 

4. 0.008017644 0.008018028 0.000000192285 

5. 0.007178921 0.00717783 0.000000545386 

6. -0.005726789 -0.005729173 0.00000119161 

7. -0.009006871 -0.00900474 0.00000106561 

8. 0.002859876 0.002857755 0.0000010607 

9. 0.009919876 0.009916016 0.00000192992 

10. 0.000398376 0.000304249 0.00000470636 

MVIM, modified Variational iteration method; RKF45, Runge-

Kutta Fehlberg  method. 

 
Fig. 6.   Comparison between, VIM with Laplace and RKF45 for A = 

0.001. RKF45,  Runge-Kutta Fehlberg method; VIM, Variational 
iterative method 

In this section, we have characterised the error analysis of the 

analytical solution by MVIM and numerical solution by RKF45. In 

Tab. 6, error term E6 again conforms the validity of the solution by 

MVIM. 

Tab. 6. Error analysis for problem 

Time 

steps 
RKF45 MVIM E6 

1. -0.000239068 -0.000239034 0.0000000167992 

2. -0.0008857 -0.000885725 0.0000000126032 

3. 0.000662679 0.000662472 0.000000103627 

4. 0.000569568 0.000569018 0.000000274801 

5. -0.00093679 -0.000934501 0.0000011442 

6. -0.000126891 -0.000122262 0.0000023141 

7. 0.000996544 0.000992951 0.00000179618 

8. -0.000308648 -0.000352436 0.0000218943 

9. -0.000875433 -0.000824463 0.0000254851 

10. 0.000905437 0.000746586 0.0000794254 

MVIM, modified Variational iteration method; RKF45, Runge-

Kutta Fehlberg  method. 

5. CONCLUSIONS 

  The Modified Laplace-Based variational Iteration Method 

VIM (MLVIM) has been applied to the Duffing equation and has 

yielded numerical results that are in good agreement with numeri-

cal solution. 

Numerical simulations using the MLVIM have shown that the 

method is capable of capturing the nonlinear behavior exhibited 

by the Duffing equation. The approximate solutions obtained 

through the MLVIM approach closely match the expected trends 

and characteristics of the Duffing equation, including nonlinear 

oscillations, bifurcations, and chaos. 

Comparisons between the MLVIM results and RKF45 have 

demonstrated a high degree of accuracy. The MLVIM has been 

successful in reproducing key features of the Duffing equation, 

such as the amplitude-frequency response, phase portraits, and 

frequency response curves. 

Additionally, the MVIM has proven to be a versatile method for 

studying different variations of the Duffing equation, including 

those with additional nonlinear terms or external forcing. By ap-

propriately modifying the iterative scheme and incorporating the 

necessary terms, the MLVIM has been able to handle these ex-

tensions and produce satisfactory numerical results. 

It is worth noting that the accuracy of the MLVIM solutions de-

pends on the number of iterations performed and the convergence 

behaviour of the method. In cases where the Duffing equation 

exhibits strong nonlinearity or complex dynamics, a higher number 

of iterations may be required to achieve desired accuracy. 

We can conclde that the MLVIM has provided numerical re-

sults which are in good agreement with RKF45 for the Duffing 

equation. This method demonstrates its effectiveness in capturing 

the nonlinear behavior and complex dynamics exhibited by the 

Duffing equation, making it a valuable tool for analysing and un-

derstanding such systems. 
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