Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The smart household connected to the energy dispatch arises to overcome the environmental crisis, encourages the penetration of renewable energies and promotes consumer respond to intraday market prices. Aquaponic production results from the combination of fish farming and hydroponics (cultivating plants using fish waste as nutrients). The prototype was built based on the rule of the 3 Rs: reduce, reuse and recycle. The crop reduces the consumption of water and energy, reuses water in a recirculation process, which is filtered by: 1) gravity, 2) biofilters and 3) porosity. Recycling is expanded to plastic containers and food containers of polystyrene. The aquaponic production system is decorative, completely organic (without chemicals), promotes the growth of green areas for comfortable homes and allows the consumption of healthy food, as well as energy planning to save energy. The system is done with a digital level control connected to a water pump and an oxygen pump. A novel method allows the aggregator to optimize the recirculation programming of the aquaponic system for periods of 24 hours. The method maximizes the economic benefits with the help of an energy balance between hours.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
89--100
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wz.
Twórcy
autor
- Universidad Nacional de Colombia Colombia
autor
- Universidad Francisco de Paula Santander Ocaña Colombia
autor
- Universidad Francisco de Paula Santander Ocaña Colombia
autor
- Universidad Nacional de Colombia Colombia
Bibliografia
- [1] Greenfeld A., Becker N., McIlwain J., Fotedar R., Bornman J.F., Economically viable aquaponics? Identifying the gap between potential and current uncertainties, Reviews in Aquaculture, pp. 1–15 (2018).
- [2] García-Guarín J., Rivera S., Rodriguez H., Smart grid review: Reality in Colombia and expectations, Journal of Physics Conference Series 5th International Meeting of Technological Innovation, vol. 1257, pp. 1–8 (2019).
- [3] Quilumba F., Lee W., Huang H., Szabados R., Using smart meter data to improve the accuracy of intraday load forecasting considering customer behavior similarities, IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 911–918 (2015).
- [4] Ghazvini M., Soares J., Abrishambaf O., Demand response implementation in smart households, Energy and Buildings, vol. 143, 129–148 (2017).
- [5] CREG, Propuesta para la implementación de un despacho vinculante, CREG-004B (2016).
- [6] Junge R., König B., Villarroel M., Komives T., Jijakli M., Strategic points in aquaponics, Water, pp. 1–9 (2017).
- [7] Duran-Pinzón M., Páez-Arango J., García-Guarín P.J., Modelado numérico y análisis experimental para flujos en un medio poroso homogéneo a través de suelos, Iteckne, vol. 15, no. 1, pp. 24–33 (2018).
- [8] Ramirez D., Sabogal D., Ramírez E.G., Caicedo D.R., Giraldo H.H., Montaje y evaluación preliminar de un sistema acuapónico goldfish-lechuga, Revista Facultad de Ciencias Básicas, vol. 5, no. 1–2, pp. 154–170 (2009).
- [9] Sánchez L.M.R., Trujillo M.M.P., Jiménez P., Giraldo H.H., Ramírez E.G., Evaluación preliminar de sistemas acuapónicos e hidropónicos en cama flotante para el cultivo de orégano (Origanum vulgare: Lamiaceae), Revista Facultad de Ciencias Básicas, vol. 7, no. 2, pp. 242–259 (2016).
- [10] Espinosa Moya E.A., Angel Sahagún C.A., Mendoza Carrillo J.M., Albertos Alpuche P.J., ÁlvarezGonzález C.A., Martínez-Yáñez R., Herbaceous plants as part of biological filter for aquaponics system, Aquaculture Research, vol. 47, no. 6, pp. 1716–1726 (2016).
- [11] Quagrainie K.K., Flores R.M.V., Kim H.J., McClain V., Economic analysis of aquaponics and hydroponics production in the US Midwest, Journal of Applied Aquaculture, vol. 30, no. 1, pp. 1–14 (2018).
- [12] Gutiérrez M.E.M., Sistemas de recirculación acuapónicos, Informador Técnico, vol. 76, pp. 123–129 (2012).
- [13] Zhou Y., Wang C., Wu J., Wang J., Cheng M., Li G., Optimal scheduling of aggregated thermostatically controlled loads with renewable generation in the intraday electricity market, Applied Energy, vol. 188, pp. 456–465 (2017).
- [14] Fernando L., Joao S., Zita V., Jose R., Competition on Evolutionary Computation in Uncertain Environments: A Smart Grid Application, Guidelines for the CEC and GECCO, pp. 1–19 (2019).
- [15] Soares J., Canizes B., Fotouhi Gazvhini M.A., Vale Z., Venayagamoorthy G.K., Two-stage Stochastic Model using Benders’ Decomposition for Large-scale Energy Resources Management in Smart grids, IEEE Trans. Ind. Appl., vol. 53, no. 6, pp. 1–1 (2017).
- [16] Martinez F.A.P., Vivas O.A.G., Rosas Y.S.S., Cuantificación del ahorro de energía eléctrica en clientes residenciales mediante acciones de gestión de demanda, Revista UIS Ingenierías, vol. 16, no. 2, pp. 217–226 (2017).
- [17] Garcia-Guarin P., Cantor-López J., Cortés-Guerrero C., Guzmán-Pardo M., Rivera S., Implementación del algoritmo VNS-DEEPSO para el despacho de energía en redes distribuidas inteligentes, Revista INGE CUC, vol. 15, no. 1, pp. 142–154 (2019).
- [18] Miranda V., Alves R., Differential evolutionary particle swarm optimization (deepso): A successful hybrid, In 2013 BRICS Congress on Computational Intelligence and 11th Brazilian Congress on Computational Intelligence, pp. 368–374 (2013).
- [19] Fortes E.D.V., Macedo L.H., de Araujo P.B., Romero R., A VNS algorithm for the design of supplementary damping controllers for small-signal stability analysis, International Journal of Electrical Power and Energy Systems, vol. 94, pp. 41–56 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a89ec0f7-6f39-4e9f-9b4b-638722857c74