PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Epigenetics is promising direction in modern science

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Epigenetics studies the inherited changes in a phenotype or in expression of genes caused by other mechanisms, without changing the nucleotide sequence of DNA. The most distinguished epigenetic tools are: modifications of histones, enzymatic DNA methylation, and gene silencing mediated by small RNAs (miRNA, siRNA). The resulting m5C residues in DNA substantially affect the cooperation of proteins with DNA. It is organized by hormones and aging-related alterations, one of the mechanisms controlling sex and cellular differentiation. DNA methylation regulates all genetic functions: repair, recombination, DNA replication, as well as transcription. Distortions in DNA methylation and other epigenetic signals lead to diabetes, premature aging, mental dysfunctions, and cancer.
Rocznik
Strony
123--135
Opis fizyczny
Bibliogr. 59 poz., tab., il.
Twórcy
  • Danylo Halytsky Lviv National Medical University, Pekarska, 69, 79010, Ukraine, phone +38 032 275-76-32
  • Danylo Halytsky Lviv National Medical University, Pekarska, 69, 79010, Ukraine, phone +38 032 275-76-32
  • Danylo Halytsky Lviv National Medical University, Pekarska, 69, 79010, Ukraine, phone +38 032 275-76-32
autor
  • Danylo Halytsky Lviv National Medical University, Pekarska, 69, 79010, Ukraine, phone +38 032 275-76-32
  • Danylo Halytsky Lviv National Medical University, Pekarska, 69, 79010, Ukraine, phone +38 032 275-76-32
Bibliografia
  • [1] Bird A. Perceptions of epigenetics. Nature. 2007;447(7143):396-8. DOI: 10.1038/nature05913.
  • [2] Ashapkin VV, Kutueva LI, Vanyushin BF. The gene for domains rearranged methyltransferase (DRM2) in Arabidopsis thaliana plants is methylated at both cytosine and adenine residues. FEBS Lett. 2002;532(3):367-72. DOI: 10.1016/s0014-5793(02)03711-0.
  • [3] Chow J, Heard E. X inactivation and the complexities of silencing a sex chromosome. Current Opinion Cell Biol. 2009;21:359-66. DOI: 10.1016/j.ceb.2009.04.012.
  • [4] Singh RK, Prasad M. Delineating the epigenetic regulation of heat and drought response in plants. Critical Rev Biotechnol. 2021:1-4. DOI: 10.1080/07388551.2021.1946004.
  • [5] Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the epigenetic landscape of cancer – Application potential of flavonoids in the prevention and treatment of cancer. Frontiers Oncol. 2021;11:2331. DOI: 10.3389/fonc.2021.705903.
  • [6] Bartholdy B, Lajugie J, Yan Z, Zhang S, Mukhopadhyay R, Greally J. et al. Mechanisms of establishment and functional significance of DNA demethylation during erythroid differentiation. Blood Adv. 2018;2(15):1833-52. DOI: 10.1182/ bloodadvances.2018015651.
  • [7] de Oliveira DT, Guerra-Sa R. Uncovering epigenetic landscape: a new path for biomarkers identification and drug development. Molecular Biol Reports. 2020;47:9097-122. DOI: 10.1007/s11033-020-05916-3.
  • [8] Ehrlich M. DNA hypermethylation in disease: mechanisms and clinical relevance. J Epigenetics. 2019;14:1141-63. DOI: 10.1080/ 15592294.2019.1638701.
  • [9] Wilson AS, Power BE, Molloy PL. DNA hypomethylation and human diseases. Biochim Biophys Аcta. 2007;1775:138-62. DOI: 10.1016/ j.bbcan.2006.08.007.
  • [10] Le Hellard S, Keller MC, Andreassen OA, Deary IJ, Glahn DC, Malhotra AK. GWAS meta-analysis reveals novel loci and genetic correlates for general cognitive function: a report from the COGENT consortium. Mol Psychiatry. 2017;22(3):336-45. DOI: 10.1038/ mp.2016.244.
  • [11] Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an epigenetic phenomenon. Curr Genomics. 2017;18(5):385-407. DOI: 10.2174/1389202918666170412112130.
  • [12] Ryabukha OІ, Fedorenko VI. To the structural and functional preconditions of the emergence of thyroid pathology (literature review). Medicni Perspektivi. 2021;26(3):169-78. DOI: 10.26641/2307-0404.2021.3.242253.
  • [13] Ashapkin VV, Kutueva LI, Vanyushin BF. Epigenetic clock: Just a convenient marker or an active driver of aging? Adv Exp Med Biol. 2019;1178:175-206. DOI: 10.1007/978-3-030-25650-0_10.
  • [14] Gangisetty O, Cabrera MA, Murugan S. Impact of epigenetics in aging and age related neurodegenerative diseases. Front Biosci (Landmark Ed). 2018;23:1445-64. DOI: 10.2741/4654.
  • [15] Korda Z, Pishva E, van den Hove DL. Epigenetics in Drug Discovery: Achievements and Challenges. In: Modern CNS Drug Discovery. Cham: Springer; 2021;57-75. DOI: 10.1007/978-3-030-62351-7_4.
  • [16] Oda M, Glass JL, Thompson RF, Mo Y, Olivier EN, Figueroa ME et al. High-resolution genome-wide cytosine methylation profiling with simultaneous copy number analysis and optimization for limited cell numbers. Nucleic Acids Res. 2009;37:3829-39. DOI: 10.1093/nar/gkp260.
  • [17] Yi SV, Goodisman MA. The impact of epigenetic information on genome evolution. Phil Trans Royal Soc B. 2021;376(1826):20200114. DOI: 10.1098/rstb.2020.0114.
  • [18] Baribault C, Ehrlich KC, Ponnaluri VKC. Developmentally linked human DNA hypermethylation is associated with down-modulation, repression, and upregulation of transcription. Epigenetics. 2018;2:1-15. DOI: 10.1080/15592294.2018.1445900.
  • [19] Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol Psychiatry. 2017;81(2);162-70. DOI: 10.1016/j.Biopsych.2016.03.1048.
  • [20] Aref-Eshghi E, Rodenhiser DI, Schenkel LC. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am J Hum Genet. 2018;102(1):156-74. DOI: 10.1016/j.ajhg.2017.12.008.
  • [21] Mazzone R, Zwergel C, Artico M. The emerging role of epigenetics in human autoimmune disorders. Clin Epigenetics. 2019;11(1):34. DOI: 10.1186/s13148-019-0632-2.
  • [22] Evans LM, Tahmasbi R, Vrieze SI, Abecasis GR, Das S, Gazal S, et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat Genet. 2018; 50(5):737-45. DOI: 10.1038/s41588-018-0108-x.
  • [23] Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin. 2017;10(18):1-19. DOI: 10.1186/s13072-017-0125-5.
  • [24] Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol. 2019;54(1):61-83. DOI: 10.1080/10409238.2019.1570075.
  • [25] Ummarino S, Hausman C, Gaggi G, Rinaldi L, Bassal MA, Zhang Y, et al. NAD modulates DNA methylation and cell differentiation. Cells. 2021;10(11):2986:1-17. DOI: 10.3390/cells10112986.
  • [26] Mochizuki K, Hariya N, Kubota T. Novel models of epigenetic gene regulation in the nutritional environment. Adv Exp Med Biol. 2018;1012:11-8. DOI: 10.1007/978-981-10-5526-3_2.
  • [27] Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med. 2021;170:70-84. DOI: 10.1016/j.freeradbiomed.2021.01. 008.
  • [28] Domann FE, Hitchler MJ. Aberrant redox biology and epigenetic reprogramming: Co-conspirators across multiple human diseases. Free Radic Biol Med. 2021;170:2-5. DOI: 10.1016/j.freeradbiomed.2021.04. 020.
  • [29] Lamadema N, Burr S, Brewer AC. Dynamic regulation of epigenetic demethylation by oxygen availability and cellular redox. Free Radic Biol Med. 2019;131:282-98. DOI: 10.1016/j.freeradbiomed.2018.12.009.
  • [30] Kumar SRM, Wang Y, Zhang X, Cheng H, Sun L, He S, et al. Redox components: key regulators of epigenetic modifications in plants. Int J Mol Sci. 2020;21(4):1419. DOI: 10.3390/ijms21041419.
  • [31] Kumar S., Chinnusamy V., Mohapatra T. Epigenetics of modified DNA bases: 5-Methylcytosine and beyond. Front Genet. 2018;9:640-54. DOI: 10.3389/fgene.2018.00640.
  • [32] Kumar S, Cheng X, Klimasauskas S. The DNA (cytosine-5) methyltransferases. Nucleic Acids Res. 1994;22(1):1-10. DOI: 10.1093/nar/22.1.1.
  • [33] Rocha MS, Castro R, Rivera I, Kok RM, Smulders YM, Jakobs C. Global DNA methylation: comparison of enzymatic- and non-enzymatic-based methods. Clinical Chem Lab Medicine. 2010;48:1793-8. DOI: 10.1515/CCLM.2010.346.
  • [34] Neri F, Incarnato D, Oliviero S. DNA methylation and demethylation dynamics. Oncotarget. 2015;6(33):34049-50. DOI: 10.18632/oncotarget.6039.
  • [35] Ito K , Barnes PJ, Adcock IM. Histone acetylation and deacetylation. Methods Mol Med. 2000;44:309-19. DOI: 10.1385/1-59259-072-1:309.
  • [36] Rossetto D, Avvakumov N, Côté J. Histone phosphorylation. Epigenetics. 2012;7(10):1098-108. DOI: 10.4161/epi.21975.
  • [37] Osta AE, Wolffe AP. DNA Methylation and histone deacetylation in the control of gene expression: Basic biochemistry to human develop-ment and disease. Gene Expr. 2000;9(1-2):63-75. DOI: 10.3727/000000001783992731.
  • [38] Matzke MA, Matzke AJ. Homology dependent gene silencing in transgenic plants: what does it really tells us. Trends Genet. 1995;11(1):1-2. DOI: 10.1016/s0168-9525(00)88973-8.
  • [39] Santos JH. Mitochondria signaling to the epigenome: A novel role for an old organelle. Free Radic Biol Med. 2021;170:59-69. DOI: 10.1016/j.freeradbiomed.2020.11.016. PMID: 33271282
  • [40] Stefanowicz D, Ullah J, Lee K, Shaheen F, Olumese E, Fishbane N, et al. Epigenetic modifying enzyme expression in asthmatic airway epithelial cells and fibroblasts. BMC Pulm Med. 2017;17(1):1-11. DOI: 10.1186/s12890-017-0371-0.
  • [41] Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radic Biol Med. 2021;170:19-33. DOI: 10.1016/j.freeradbiomed.2020.12.002.
  • [42] Hamza M, Halayem S, Mrad R, Bourgou S, Charfi F, Belhadj A. Epigenetics' implication in autism spectrum disorders: A review. Encephale. 2017;43(4):374-81. DOI: 10.1016/j.encep.2016.07.007
  • [43] Brewer AC. Physiological interrelationships between NADPH oxidases and chromatin remodeling. Free Radic Biol Med. 2021;170:109-15. DOI: 10.1016/j.freeradbiomed.2021.01.052.
  • [44] Xiao X, Liu X, Jiao B. Epigenetics: Recent advances and its role in the treatment of Alzheimer’s disease. Front Neurol. 2020;11:538301. DOI: 10.3389/fneur.2020.538301.
  • [45] Xu M, Zhu J, Liu XD, Luo MY, Xu NJ. Roles of physical exercise in neurodegeneration: reversal of epigenetic clock. Transl Neurodege-ner. 2021;10:30-45. DOI: 10.1186/s40035-021-00254-1.
  • [46] Wang L, Yu CC, Liu XY, Deng XN, Tian Q, Du YJ. Epigenetic modulation of microglia function and phenotypes in neurodegenerative diseases. Neural Plast. 2021;2021:1-13. DOI: 10.1155/2021/9912686.
  • [47] Pierandrei S, Truglio G, Ceci F, Del Porto P, Bruno SM, Castellani S, et al. M. DNA methylation patterns correlate with the expression of SCNN1A, SCNN1B, and SCNN1G (epithelial sodium channel, EnaC) genes. Int J Mol Sci. 2021;22:3754. DOI: 10.3390/ijms22073754.
  • [48] Hogan R, Flamier A, Nardini E, Bernier G. The role of BMI1 in late-onset sporadic Alzheimer's disease. Genes (Basel). 2020;11:E825. DOI: 10.3390/genes11070825.
  • [49] Murshid NM, Lubis FA, Makpol S. Epigenetic changes and its intervention in age-related neurodegenerative diseases. Cellular Molecular Neurobiol. 2020. DOI: 10.1007/s10571-020-00979-z.
  • [50] Titcombe P, Murray R, Hewitt M, Antoun E, Cooper C, Inskip HM, et al. Human non-CpG methylation patterns display both tissue-specific and inter-individual differences suggestive of underlying function. Epigenetics. 2021:1-12. DOI: 10.1080/15592294.2021.1950990.
  • [51] Coppedè F. One-carbon epigenetics and redox biology of neurodegeneration. Free Radical Biol Med. 2021;170:19-33. DOI: 10.1016/j.freeradbiomed.2020.12.002.
  • [52] Domann FE, Hitchler MJ. Introduction to the special issue on ‘epigenetics and redox signaling’. Free Radical Biol Med. 2021;170. DOI: 10.1016/j.freeradbiomed.2021.04.015.
  • [53] García-Giménez J-L. Garcés C, Romá-Mateo C, Pallardó FV. Oxidative stress-mediated alterations in histone post-translational modifications. Free Radical Biol Med. 2021;170:6-18. DOI: 10.1016/j.freeradbiomed.2021.02.027.
  • [54] Fernandez A, O'Leary C, O'Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic mechanisms in DNA double strand break repair: A clinical review. Front Mol Biosci. 2021;8:685440. DOI: 10.3389/fmolb.2021.685440.
  • [55] Yang B, Chen Q. Cross-talk between oxidative stress and m6A RNA methylation in cancer. Oxid Med Cell Longev. 2021:1-26. DOI: 10.1155/ 2021/6545728.
  • [56] Börner JH, Rawashdeh O, Rami A. Exacerbated age-related hippocampal alterations of microglia morphology, β-amyloid and lipofuscin deposition and presenilin overexpression in per1-/--mice. Antioxidants (Basel). 2021;10(9):1330. DOI: 10.3390/antiox10091330.
  • [57] Ebrahimi SO, Reiisi S, Shareef S. miRNAs, oxidative stress, and cancer: A comprehensive and updated review. J Cell Physiol. 2020;235(11):8812-25. DOI: 10.1002/jcp.29724.
  • [58] Dionisio PA, Amaral JD, Rodrigues CMP. Oxidative stress and regulated cell death in Parkinson's disease. Ageing Res Rev. 2021;67. DOI: 10.1016/j.arr.2021.101263.
  • [59] Barbieri M. A new theory of development: the generation of complexity in ontogenesis. Phil Trans Royal Soc Math Phys Eng Sci. 2016:1-13. DOI: 10.1098/rsta.2015.0148.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a89d777d-3caf-4029-a9aa-2a7c16eb4dca
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.