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Abstract: Epigenetics studies the inherited changes in agiipe or in expression of genes caused by other
mechanisms, without changing the nucleotide sequefdNA. The most distinguished epigenetic toadle: a
modifications of histones, enzymatic DNA methylati@and gene silencing mediated by small RNAs (miRNA
siRNA). The resulting m5C residues in DNA substantiallyeefffthe cooperation of proteins with DNA. It is
organized by hormones and aging-related altergtiong of the mechanisms controlling sex and cellula
differentiation. DNA methylation regulates all génédunctions: repair, recombination, DNA replicatj as well

as transcriptionDistortions in DNA methylation and other epigenetignals lead to diabetes, premature aging,
mental dysfunctions, and cancer.
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I ntroduction

Recent scientific studies have highlighted the irtgoet role of fine-tuning
mechanisms in the processes of genome functionimg its interaction with the
environment.

The obtained results proved that a significant pathese data lies in those processes
that are described by studies of hereditary pragsedf the organism, which are not directly
related to the changes of the nucleotide sequenadNA molecule [1-3].

Despite the successes of molecular biology and tigsneit is still unclear how
the usual growth of an organism occurs, as celfgaining the same genetic data from
the beginning, precisely and correctly implemerg freculiarities of certain parts of the
genome in a specific phenotype. Epigenetics hatpsiswer the following questions:
carcinogenesis, plasticity of stem cells, cell titgr(specificity), regeneration of cells and
tissues in animals and plants, aging, programmathdé, 5].

There are a number of factors that regulate theessppon of genes: methyl CpG
DNA-binding and other proteins, histone modificaBp hormone-receptor complexes,
DNA methylation, nucleosome remodeling and chromaiverall rearrangement, and
interaction with short non-encoding RNAs. Gene egpion requires complex complexes
with more than 100 proteins that are involved iitiating and prolonging transcription
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from a single promoter and iRNA processing. Epigieneontrol can amplify the initial
signal (the promoter stimulation) or carry out filencing of the gene. Epigenetic memory
is sometimes related to particular alterationsistoimes in chromatin [6, 7].

In particular, this can occur with gene silencirgstprohibition (conformational
"lock”) in a specific area of the chromosome magdrae substantial as a consequence of
induced (allowed) methylation of DNA by this chrainastate [8].

The factors related to the environment can haveteable effect on the enzymes’
activity, which carry out alterations of DNA andstunes. These cofactors incorporate:
acetylcoensyme A for acetylase, ATP for kinasesad&aosylmethionine (SAM) for
methyltransferases. The level of those cofactorthéncell can differ remarkably and rely
upon the environment. Adequate epigenetic consrédiimed on the basis of many factors
balance [9].

How data and information concerning the chromatistsicture is realized to the
daughter from the mother cell? This can happehigway. This is clear that the of "core”
histone proteins’ synthesis is clearly organizedttie cycle of cell. In the process of
chromatin formation, certain proteins, relying ugbe nature and degree of their enzyme
alterations, can bind to the DNA to shape corredpansites for transcription [10].

Changes in the character of histone and DNA metioylahave been detected,;
structural alterations in the nucleosome are nstilted from a gene that has undergone
mutations directly, therefore, it can be regardedepigenetic aberration. That also is
applicable to mutations in the synthesis and atiian of SAM genes: the absence of SAM
results in a violation of trans-methylation respems the cell and inactivation of a number
of enzymes for which SAM is an allosteric effectdowever, although epigenetic changes
are transmitted by heredity, this is not infinit¢lyl]. The central biology dogma of DNA
< RNA — protein is currently supplemented with knowledggarding prions proteins
that are capable of replication, inherited withalé participation of DNA and RNA
matrices [12].

Chromatine proteins histones are inhibitors of dcaiption: the DNA free of them is
much better transcribed than chromatin bound tenthiEhere was an impression that for
effective transcription it seems vital to "undresis& DNA, releasing it from the histones.
Nonetheless, Allfrey and Mirsky demonstrated th&tdmes can be proacetylated to
activate transcription of inactive chromatin, whiéh accompanied by a significant
weakening of the binding of these proteins to DNA][ Widely known modifications of
histones include acetylation, phosphorylation, ietion, ubiquitination [14].

There are many different epigenetic signals indék and in the organism. Among
these signals are currently known [15, 16]:

- Methylation of DNA;

- Several histones’ enzymatic modifications;

- Chromosomal and genomic rearrangements;

- Small non-coding RNA (siRNA, or so-called smalidgrfering RNA).

Epigenetics is the study of epigenetic signalsirthature, their interaction and the
physico-chemical effects that they cause, theidopical action in the cell at several
functional levels of the organism and in differeminditions of the external and internal
environment.
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Methylation of DNA - an epigenetic mechanism for monitoring
the genetic functions of the body

Scientists have discovered that the features diigller plants’ DNA is somewhat high
content of their additional base - 5-methylcytosimeC). Later in plant DNA, as in
bacteria, was found Nmethyladenin (#A) (Table 1) [17].

Table 1
Minor methylated bases in DNA [11, 13]
Or ganisms Minor bases[%]
m°C m°A
Bacteria 0.01-1.53 0.02-0.70
Algae 0.20-3.50 0.10-0.60
Mushrooms + 0-0.5
The simplest 0.3-1.0
Plants 2.0-10.0 0.5-1.0
Invertebrates 0.1-2.5 ?
Vertebrates 0.7-3.5 +

For several years, these bases’ origin in the Di#exl unrevealed. First in bacteria
and then in eukaryotes in 1963, enzymes were deteathich in the existence of a donor
of methyl groups of S-adenosylmethionine selecfivekethylated individual residues of
cytosine and adenine in the DNA chains. Scienkiat@ investigated that the "minor” bases
(m°C and mMA) found in the DNA molecule are not embedded imttie the finished form.
They are formed as a consequence of enzymaticatdter (methylation) of the
corresponding bases (Fig. 1) in the shaped ch&ibiNé [18, 19].
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Fig. 1. Modifications (methylation) of the corresgiing bases in the DNA chains (arrows show the
locations of the methylated points) [20]
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In this case, the enzyme DNA-methyltransferase $oarcovalently linked complex
with DNA extracted from the double-stranded DNA thie modified base DNA and
methylates it (Fig. 2).
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Fig. 2. Complex of cytosine DNA-methyltransferasmd DNA [21]

After that, the covalent bond between the DNA drelénzyme is broken, the complex
breaks down, and the methylated bas&Q)mets back to its position in the DNA structure
[22]. Methylation of DNA has a substantial effect ibs relation (binding) with different
proteins. Particularly, proteins that speciallytin the regulatory elements of rRNA genes
have been detected in plant nuclei and indicatatishme of those nuclear proteins binding
is modulated by methylation of in vitro cytosine BXesidues [23, 24].

In several cases, the methylation of DNA by cytesmasidues stop its binding to
specifically reacting with proteins that carry osgveral genetic procedures, such as
replication, transcription, as well as DNA repai25] 26]. The so-called I8rG
DNA-binding proteins, which are specifically locdt®n the DNA of complex protein
complexes, control and express genes [27].

If protein-free DNA is incubated with S-adenosyliriehine labeled in the methyl
group, then after a while this label is alreadyspre in the DNA in the form of the formed
5-methylcytosine and thymine. Thus, non-enzyme wiation of DNA was discovered
(Fig. 3) [28].

DNA + methyl*- SAM — methyl- DNA + SAH

Cytosine — 5-methyl*cytosine —» (5-methyl *uracil) thymine

CG — m’CVYG —> TAG
¥\

TA GC
GC — AT (trancision)
Fig. 3. Non-enzymatic methylation of DNA [28]
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Regarding that case, the labeled thymine in DNA wase than m5C. Therefore, it
was discovered that the non-enzyme methylationNALn the solution is accompanied by
rapid oxidative deamination of the formed residm@€ with conversion to the remainders
of thymine. This proved that the cytosine residueshylation in DNA can result in & T
transitions (GC-pair of bases is substituted for -péir), and the residues of
5-methylcytosine act as mutational points [29].

Specificity of enzyme methylation of DNA

DNA-methyltransferase enzymes have used the pésgsibi DNA methylation, they
modify cytosolic or adenine residues in certainl@oittde sequences [30]. Methylation of
DNA is also carried out in animal cells, where laasignificant biological significance.
Methylation of cytosine residues is mainly obseriredhe methylation of DNA, which is
induced by small RNAs [31].

Methylation of DNA in animals and plants, carriedt &y site-specific enzymes with
cytosine DNA-methyltransferases, leads to the getowe of 5-methylcytosine residues
(m°C) in the sequences of CG, CNG and SNN. Adeninéhytation of DNA has been
discovered in plants. The appearance 8€mesidues in DNA significantly affects the
interaction of DNA with proteins. DNA methylatiorften blocks the binding of DNA to
such proteins and prevents gene transcriptionoanthe other hand, it is a prerequisite for
binding proteins [31]. There are specialGrG DNA binding proteins. Linking proteins
with DNA arranges the entire ensemble of proteih¢he transcription machinery and is
required for its activity [32].

In animals and plants, along with the linking piesespecies, there is also tissue
(cellular) subcellular (organoid) and age-speddidA methylation. Methylation of DNA
in animals decreases with age [33].

It has been proven that in the mitochondria andeuscof the same cell DNA is
methylated in different ways. In the mitochondr@NA from the heart of the bull,
5-methylcytosine is detectedlytosine DNA-methyltransferase has been isolatedan fro
animal mitochondria and it has been shown that ¢hizyme has another site specificity
compared to nuclear DNA-methyl transferase. Unbkémals, 5-methylcytosine was not
found in plants in DNA of mitochondria, bufhethyleneden was detected in them [34].

Three cytosine DNA-methyltransferases types andveabten genes encoding
DNA-methyltransferases have been identified in fgaihis is much more than in the
eukaryotes. These enzymes carry out the methylafitimee CpG stes for DNA replication,
generally ensuring the conservation and transfahefinherent inheritance of the overall
picture of the methylation of these sites in thaayee [35]. In plants, methylation of DNA
is controlled by phytohormones and specific reguiabf plant growth and development.
Due to the influence of various phytohormones ianfd, methylation of DNA in the cell
cycle significantly decreases [36].

In humans, three enzymes, the so-called DNA-metmdferases 1, 3a and 3b
(DNMT1, DNMT3a and DNMT3b), correspond to the DNAethylation process. It is
anticipated that DNMT3a and DNMT3b are de novo Bgsized methyltransferases that
create the formation of DNA methylation in the gadtages of development, while
DNMT1 carries out DNA methylation on subsequengetaof the body’s life. The enzyme
DNMT1 has a high affinity to 5-methylcytosine. WhBINMT1 finds a "semi-methylated
site” (a site where methylated cytosine is onlyire DNA strand), it methylates cytosine
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of the second thread on the same site. The funofionethylation is to activate / inactivate
the gene. In most cases, methylation of the prometgons of the gene leads to inhibition
of gene activity. It is shown that even minor ches¢n the degree of methylation of DNA
can significantly alter the genetic expression [37]

DNA-methyltransferases are redox sensitive enzyfles.DNMT1 enzyme in vivo is
responsible for the proper development of the embiyprinting, inactivation of the X
chromosome and restoring the DNA structure aftpliaation. It is present in most cases in
somatic cells and is localized in the tricks of D&plication, interacting with the nuclear
antigen of proliferating cells (PCNA). Enzymes DNB& and DNMT3b are involved in de
novo methylation. Expressed in embryonic and sameagils of an adult. DNMT 3L is
present in the germ cells and interacts with DNM&8d DNMT3b in imprinting of parent
genes. DNMT?2 is detected in all cell types, butsdoet exhibit enzyme activity, so its
function is not yet established [38].

A number of diseases, in particular cancer, areorapanied by abnormal
hypomethylation of DNA and hypermethylation of CgBands in the promoter portions of
proapoptic genes (suppressors of oncogenes), wetis to sustained repression of
transcription [39, 40]. The transcriptional repiessin this case is mediated by proteins
that can bind to methylated CpG dinucleotides. Mieetitosine-binding proteins activate
histone deacetylase (HDAC) and other factors inelvn chromatin remodeling [39].

The formed complex may modify histones, forming andensed transcriptionally
inactive structure of heterochromatin. The effettnwethylation of DNA on chromatin
structure is of great importance for the developnasd functioning of a living organism.
In particular, the absence of methylcytosine-bigdamotein 2 (MeCP2) due to, mutations
in the corresponding gene, leads to the developofadRétt syndrome in humans [40].

The inactivation of methylcytosine-binding protedomain 2 (Methyl-CpG binding
domain protein 2 - MBD2), which is involved in thepression of transcription of
hypermethylated genes, is observed in oncologisabdes [41].

Methylation of DNA in animals and plants has a iletcommon. Nevertheless, in
plants it has several specific features. The matagl CNG proportion and asymmetric
DNA sequences in plant genomes is more substaatiapared to that of in animals. Plants
own a significantly more complex system of methglatf genomes than animals [42].

Contrary to animals, plants own particular orgaell- plastids (amyloplasty,
leukoplates, chloroplasts, chromoplasts), whichehtheir own, different from nuclear,
system of modification (methylation) of DNA. Thosgstems can have a substantial role in
the functioning and differentiation of plastids. BNMethylation (mtDNA) in plant
mitochondria is different from that in the nucled&-methyladenine was found in plant
MtDNA, but not 5-methylcytosine, which is inherémtanimal mtDNA [43].

In plant there is a system of restriction - modifion of the genome. The plants have
S-adenosylmethionine-dependent endonuclease, waieh sensitive to the status of
methylation of DNA. Plant endonuclease is to somkerg similar to a typical bacterial
restriction endonuclease [44].

Three components of this complex system: substiai¢A, enzyme (DNA
methyltransferase) and donor methyl groups S-agémeshionine are involved in genome
modification (Fig. 4). Control over the modificatimf DNA and the effectiveness of this
process is carried out at the level of all thesmmanents, and with the participation of
other diverse components of cellular metabolism.atidition, the methylation of the
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genome in a differentiated cell at a certain stafgentogeny also depends on the activity of
the enzymes that demethyate the DNA.
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Fig. 4. Methylation and demethylation of DNA [44]

However, often in the presence of these active mesy a sufficient amount of
S-adenosylmethionine (a donor of methyl groupsamnénzyme activity modulator) and in
the absence of appropriate inhibitors, these m@astin the nucleus are not possible due to
the inaccessibility of the substrate-DNA in thearhatin for enzymes. Here it is important
to organize the chromatin itself [45].

In addition to the already mentioned multiple maxdifions of histones that modulate
the chromatin organization and the availabilityDflA for enzymes, many other proteins
compete for the binding and interaction of DNA-nydtitansferases with DNA.
In particular, they can include proteins of hormaoeeeptor complexes.

The cytosine methylation of DNA controls plant gtbvand development (Vanyushin
B.) and animals (Pugh), is involved in the regualatdf all genetic processes, including
transcription, replication, DNA repair, cell diffstiation, genomic imprinting, and gene
transcription [46].

The discovery of specific, so-called small RNAsR{SAs, miRNAs) played
an important role in representing the molecular lmlasms of gene expression regulation.
These RNAs are encoded in the inverted sequencd®ajenome, which, as a result of
reading and subsequent processing, appear in then fof short 12-14-member
oligonucleotides.
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M odification of histones

In the cell there are many other systems of epigersignals, they are different.
In some of them the important role belongs not MADbut to proteins, including histones
of chromatin. Due to one or another modification hitones the chromatin structure
changes, which leads to inherited changes in thestription of genes. Modification
(methylation, phosphorylation, acetylation, ubiqution) often determines whether the
genes are active or not. The modification is alecompanied by multiple special
non-histone regulatory proteins that form complexath DNA that silence genes or,
conversely, trigger them. It is known that there isorrelation between the methylation of
DNA and the modification of histones. The histongsy act as a carrier of signals for the
methylation of the genome [47].

Modification of N-tails is much more frequent, digspthe fact that modifications of
amino acids in histones occur throughout the pmoteblecule. Modifications include:
acetylation, phosphorylation, methylation.

Acetylation of histones

Acetylation is the most studied modification of tbises (Fig. 5). Thus, acetylation
with the acetyltransferase of the 14th and 9thnlysihistone H3 (H3K14ac and H3K9ac,
respectively) correlates with the transcriptionetivaty in this region of the chromosome.
This is because the acetylation of lysine chandespiositive charge to neutral, which
makes it impossible to connect it with negativeharged phosphate groups in the DNA.
As a result, the histones are disconnected fromDiNA&. Histones are able to maintain
a modified state and act as a matrix for the sygishef new histones that bind to DNA after
replication [48].

Acetylation of histones
(activation of Lranscr:ptmn)

m@—»

Closed chromatin mu

Gene transcription

)

Open chromatin

deaceryianon of histones

Fig. 5. Acetylation and deacetylation of histord8] [

Modifications of histones are indicators of actimesuppressed chromatin. Degree of
acetylation of histones is determined by activity tawo types of enzymes - histone
acetyltransferase (HAT) and deacetylase (HDAC).[48]
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Phosphorylation of histones

Phosphorylation of histones occurs mainly on thamants of serine and threonine,
and affects chromatin changes, increasing the ivegaharge on the histone tail (Fig. 6).
This process is subject to dynamic regulation &f kinases (for example, phosphatase).
Phosphorylation of histones plays a functional rimleregulating the early response to
expression, as well as in the dynamics of chromesoauring mitosis [49].

Histone kinase
(Thr)Ser-CH»-OH

Histone

O_
Histone phosphorylase
| | phosphory
Ser-CH»-O-P=0 Ser-CH>-OH + P

Phospho histone
Fig. 6. Histone phosphorylation [50]

Histone

Contrary to phosphorylation and acylation, histomethylation doesn’t influence the
nucleosome charge and can have a beneficial oessipe function in the expression of
gene. Methyltransferases and dimethylases act gimiae and lysine, and control the
dynamic methylation process. [51, 52]. Modificatiohhistones leads to the induction or
enhancement of methylation of CNG sites (Fig. 7).

Acetylase

Inactive chromatin Active chromatin
Fig. 7. Activation of chromatin as a result of déhytation of DNA and acetylation of histones [53]

In a number of these transformations, methylatibbMA can be a reason and a result
of "silencing” genes [54, 55].

RNA-directed DNA methylation and gene silencing

Of particular interest today is the study mechasismd biological role of methylated
RNA-directed DNA methylation, which carries out sifie exclusion of genes (gene
silencing) [56, 57].
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It is believed that site-specific DNA methyltransfge in the presence of a small signal
RNA (Fig. 8) is carried out de novo DNA methylatiam CNG and other sites in the
nucleotide sequence of DNA, recognizing small RIAs is the methylation of the mobile

lyses the corresponding enzymes, which, in pagicand modify histones.
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Fig. 8. Gene silencing by small interfering RNASR(SAS) [58]

+1942-Conrad Waddington, the term
«epigenetics»

+1948-DNA methylation was first
described in bacteria

*1970-described the first imprinted genes.

in plants
+1974-discovery of the nucleosome as the
basic unit of chromatin by Kornberg

|

+1975-DNA methylation is involved in the regulation
of gene expression and is transmitted to daughter
cells after division (Riggs, 1975)(Robin Holhday and

John Pugh, 1975)

+1975-histone phosphorylation is described
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*1880-the term
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histones. A. Kossel
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*1964-W. Alfrey’s work on
acetylation and
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helix of DNA

*1960-term «imprinting»

*1961-discovery of
X-chromosome inactivation

+1977-ubiquitination of pistons is
described

+1978-Bird and Southem used restriction
enzymes to analyze DNA methylation

+1985-CpG islands were described
for the first time

+1987-work of Robin Holliday
«Inheritance of epigenetic defects»,
the term epigenetics

Fig. 9. Epigenetic bases of ontogenesis [59]

+2004-the role of small non-
coding RNAs in the regulation
of human transcription is
shown

*2005-discovery of piwiRNA

2012-publication of
ENCODE project

*2001-histone code concept
*2002-pyrosequencing method
#2002-described different types
of non-coding RNA in animals
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+1993-first identified microRNAs in Coenorhabditis
elegans
+1995-identified and cloned first HAT GenS5 and Hat1
*1996-methylsensitive PCR
*1997-nucleosome structure
+1998-open RNA interference

*1991-the first imprinted genes in
mammals lgf2r, Igf2 and H19
+1992-bisulfite sequencing
+1992-described methyl-DNA-binding
domains of proteins
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Modification of histones leads to induction enhaigcor enhancing the methylation of
CNG sites, which is then maintained without thetipgration of RNA trigger (Fig. 7).
DNA methylation in the RNA-DNA triplex plays a dsoie role in gene silencing small
RNAs; in organisms or mutants with defective cytesDNA methylation this RNA gene
silencing is ineffective.

The discovery of specific so-called small RNAs (8/)8® miRNA) have exploded the
understanding of molecular mechanisms regulationgehe expression and played
an exception significant role in the recognitiom atrengthening of the epigenetics.

The development of epigenetics as a separate bcdmoblecular biology began in the
1940s. Then the English geneticist Conrad Waddmgtormulated the concept of
"epigenetic landscape”, which explains the proce$sformation of the organism.
The development of epigenetics is presented inrBigu

Conclusion

The essential epigenetic signals in the cell isntie¢hylation of DNA In higher plants,
DNA is methylated with cytosine residues; 5-methitdsine is localized predominantly in
the CG and CNG sequences. The ontogeny of plamtsaaimals is generally impossible
without the methylation of the genome.

In the nucleus, there are numerous DNA-methyltienasies, the methylation of DNA
at different stages of replication may be carriad m different enzymes specificity.
The state of methylation of the genome in a difiéieged cell at a certain stage of ontogeny
also depends on the activity of the enzymes thatedeylated DNA. The degree and
character of the methylation of the genome canéterthined by the ratio of the activity of
the enzymes that are methylating and demethyliadiNA.
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