Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Low-density parity check (LDPC) is a channel coding technique widely utilized in the 5G New Radio standard, it is of utmost importance in facilitating proficient and secure communication in noisy environments by effectively minimizing errors during data transmission. It is primarily used in the 5G New Radio (NR) standard for encoding user information on the physical downlink shared channel (PDSCH). The necessity to satisfy the increasing expectations for throughput, latency, and dependability led to the decision to deploy LDPC codes for user data, especially in the enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) scenarios of 5G networks. The present system proposes the use of NR-LDPC codes to transmit data across a lognormal multipath fading channel model in the presence of AWGN. Wireless communication channels often use a lognormal multipath fading channel model, where the received signal experiences both multipath fading and lognormal shadowing. The research investigates the effectiveness of NR-LDPC coding in improving QAM-OFDM system performance by analyzing two rate-compatible base graphs and comparing their effectiveness with an uncoded system. This analysis is crucial for optimizing communication network design, especially in scenarios where the integrity of data is of utmost importance. We introduce a new method to improve the 5G NR LDPC code capability under lognormal fading conditions. This approach develops a layered min-sum (LMS) algorithm to provide enhanced error-correcting capabilities. The developed and implemented decoding algorithm represents a significant advancement over traditional detection methods. The outcomes of the simulation provide evidence of the effectiveness of the proposed NR-LDPC coding techniques in terms of their error correction and identification capabilities. In addition, the developed LMS decoding algorithm was shown to significantly decrease the BER of the system.
Rocznik
Tom
Strony
art. no. e150808
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
autor
- Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
Bibliografia
- [1] W. Ji, Z. Wu, K. Zheng, L. Zhao, and Y. Liu, “Design and Implementation of a 5G NR System Based on LDPC in Open Source SDR,” in 2018 IEEE Globecom Workshops (GC Wkshps), Abu Dhabi, United Arab Emirates, 2018, pp. 1–6, doi: 10.1109/GLOCOMW.2018.8644263.
- [2] T. Richardson and S. Kudekar, “Design of Low-Density Parity Check Codes for 5G New Radio,” IEEE Commun. Mag., vol. 56, no. 3, pp. 28–34, March 2018, doi: 10.1109/ MCOM. 2018.1700839.
- [3] R.G. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory, vol. 8, no. 1, pp. 21–28, Jan. 1962.
- [4] W.E. Ryan, “An introduction to LDPC codes,” in CRC Handbook for Coding and Signal Processing for Magnetic Recording Systems, B. Vasic, Ed., Boca Raton, FL, USA: CRC Press, 2004, Ch. 36.
- [5] Y. Fang, G. Bi, Y.L. Guan, and F.C.M. Lau, “A Survey on Protograph LDPC Codes and Their Applications,” IEEE Commun. Surv. Tutor., vol. 17, no. 4, pp. 1989–2016, 2015, doi: 10.1109/COMST. 2015.2436705.
- [6] IEEE Standard for Information Technology–Telecommunications and Information Exchange between Systems – Local and Metropolitan Area Networks–Specific Requirements, “Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Redline,” IEEE Std 802.11-2020, pp. 1–767, 26 Feb. 2021, doi: 10.1109/IEEESTD.2021.9363693.
- [7] Advanced Television Systems Committee, ATSC Standard : Physical Layer Protocol (A/322), 2018.
- [8] ETSI – EN 302755, “Digital Video Broadcasting (DVB); Frame structure channel coding and modulation for a second generation Digital Terrestrial Television Broadcasting System (DVB-T2),” pp. 1–188, Jul., 2015.
- [9] J. Song et al., “Key technologies and measurements for DTMB – A system,” IEEE Trans. Broadcast., vol. 65, pp. 53–64, Mar. 2019.
- [10] J. Malhotra, “Investigation of Channel Coding Techniques for High Data Rate Mobile Wireless Systems,” Int. J. Comput. Appl., vol. 115, no. 3, pp. 39–45, 2015.
- [11] W. Sułek, “The design of structured LDPC codes with algorithmic graph construction,” Bull. Pol. Acad. Sci. Tech. Sci.,vol. 70, no. 4, pp. 1–8, 2022, doi: 10.24425/bpasts.2022.141592.
- [12] R. Hema, A. Ananthi, and D.C. Diana, “Coded GFDM with decision feedback equaliser for enhanced perform ance in underwater wireless optical communication,” Opto-Electronics Review, vol. 32, no.1, p. 148697, 2024. doi: 10.24425/opelre.2024.148697.
- [13] G.A. Al-rubaye, C.C. Tsimenidis, and M. Johnston, “Performance evaluation of T-COFDM under combined noise in PLC with log-normal channel gain using exact derived noise distributions,” IET Commun., vol. 13, no. 6, pp. 766–775, 2019, doi: 10.1049/iet-com.2018.6185.
- [14] D.S. Shafiullah, M.R. Islam, M. Mostafa, A. Faisal, and I. Rahman, “Optimized Min-Sum decoding algorithm for Low Density PC codes,” 2012 14th International Conference on Advanced Communication Technology (ICACT), 2012, pp. 475–480.
- [15] W. Zhou and M. Lentmaier, “Generalized Two-Magnitude Check Node Updating with Self Correction for 5G LDPC Codes Decoding,” SCC 2019; 12th International ITG Conference on Systems, Communications and Coding, Rostock, Germany, 2019, pp. 1–6, doi: 10.30420/454862047.
- [16] M.K. Roberts and R.A. Jayabalan, “Modified Optimally Quantized Offset Min-Sum Decoding Algorithm for Low-Complexity LDPC Decoder,” Wirel. Pers Commun., vol. 80, pp. 561–570, 2015, doi: 10. 1007/s11277-014-2026-2.
- [17] D.D. Kumar and R.S. Selvakumari, “Performance analysis of Min-Sum based LDPC decoder architecture for 5G new radio standards,” Mater. Today-Proc., vol. 62, pp. 4965–4972, 2022, doi: 10.1016/j.matpr.2022.03.693.
- [18] K. Sun and M. Jiang, “A Hybrid Decoding Algorithm for Low-Rate LDPC codes in 5G,” 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018, pp. 1–5, doi: 10.1109/WCSP.2018.8555597.
- [19] X. Wu, M. Jiang, and C. Zhao, “Decoding optimization for 5G LDPC codes by machine Learning,” IEEE Access, vol. 6, pp. 50179–50186, 2018.
- [20] S. Enoch and I. Otung, “Performance Improvements in SNR of a Multipath Channel Using OFDM-MIMO,” Int. J. Electron. Telecommun., vol. 69, no. 4, pp. 769–773, 2023, doi: 10.24425/ijet.2023.147700.
- [21] M.H. Ali and G.A. Al-Rubaye, “Performance Evaluation of 5G New Radio Polar Code over Different Multipath Fading Channel Models,” Int. J. Intell. Eng. Syst., vol. 17, no. 2, pp. 439–452, 2024, doi: 10.22266/ijies2024.0430.36.
- [22] N. Narayana, and P. Sure, “Performance of a Software Defined Radio based Non-Coherent OFDM Wireless Link ,” Int. J. Electron. Telecommun., vol. 69, no. 3, pp. 537–544, 2023, doi: 10.24425/ijet.2023.146504.
- [23] Z. Yu, T. Lu, W. Zheng, H. Feng Z. Ma, and F. Zhu, “Novel memory efficient LDPC decoders for beyond 5G,” Phys.Commun., vol. 51, p. 101538, 2022, doi: 10.1016/j.phycom.2021.101538.
- [24] V. Vasylenko, S. Zaitsev, Y. Tkach, O. Korchenko, R. Ziubina, and O. Veselska, “Method of assessing the information reliability of in 5G wireless transmission systems,” Int. J. Electron. Telecommun., vol. 70, no. 1, pp. 205–210, 2024, doi: 10.24425/ijet.2024.149532.
- [25] C. Zhang, X. Mu, J. Yuan, H. Li, and B. Bai, “Construction of Multi-Rate Quasi-Cyclic LDPC Codes for Satellite Communications,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7154–7166, Nov. 2021, doi: 10.1109/TCOMM.2021.3107578.
- [26] F. Hamidi-Sepehr, A. Nimbalker, and G. Ermolaev, “Analysis of 5G LDPC Codes Rate-Matching Design,” IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 2018, pp. 1–5, doi: 10.1109/VTCSpring.2018.8417496.
- [27] Multiplexing and Channel Coding, document TS 38.212 V15.0.0, 3GPP, Dec. 2018.
- [28] M. Soszka, “Fading Channel Prediction for 5G and 6G Mobile,” Int. J. Electron. Telecommun., vol. 68, no. 1, pp. 153–160, 2022, doi: 10.24425/ijet.2022.139863.
- [29] V.L. Petrović, D.M. El Mezeni, and A. Radošević, “Flexible 5g new radio ldpc encoder optimized for high hardware usage efficiency,” Electronics, vol. 10, no. 9, 2021, doi: 10.3390/electronics10091106.
- [30] O. Bancalo. G. Kolm Ban, D. Declercq, and V. Savin, “Code-design density for efficient layered LDPC decoders with bank memory organization,” Microproces. Microsyst., vol. 63, pp. 216–225, Nov. 2018, doi: 10.1016/j.micpro.2018.09.011.
- [31] T. Thi, B. Nguyen, T.N. Tan, and H. Lee, “Efficient QC-LDPC Encoder for 5G New Radio,” Electronics, vol.8, no. 6, pp. 1–15, 2019, doi: 10.3390/electronics8060668.
- [32] H. Cui, F. Ghaffari, K. Le, D. Declercq, J. Lin, and Z. Wang, “Design of High-Performance and Area-Efficient Decoder for 5G LDPC Codes,” IEEE Trans. Circ. Syst. I, vol. 68, no. 2, pp. 879–891, Feb. 2021, doi: 10.1109/TCSI.2020.3038887.
- [33] Y. Wang, M. Jiang and X. Ma, “Transmitting Extra Bits With Cyclically Shifted LDPC Codes,” IEEE Wirel. Commun. Lett., vol. 10, no. 12, pp. 2824–2827, Dec. 2021, doi: 10.1109/LWC.2021.3118675.
- [34] J.V. Wonterghem, A. Alloum, J.J. Boutros, and M. Moeneclaey, “On short-length error-correcting codes for 5G-NR,” Ad Hoc Netw., vol. 79, pp. 53–62, 2018, doi: 10.1016/j.adhoc.2018.06.005.
- [35] J. Xie., L. Yin, N. Ge, and J. Lu. “Improved layered min-sum decoding algorithm for low-density parity check codes,” 9th WSEAS international conference on multimedia systems & signal processing, 2009, pp. 102–107.
- [36] J. Nadal and A. Baghdadi, “Parallel and Flexible 5G LDPC Decoder Architecture Targeting FPGA,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 29, no. 6, pp. 1141–1151, Jun. 2021, doi: 10.1109/TVLSI.2021.3072866.
- [37] N. Kumar, D. Kedia, and G. Purohit, “A review of channel coding schemes in the 5G standard,” Telecommun. Syst., vol. 83, pp. 423–448, 2023, doi: 10.1007/s11235-023-01028-y.
- [38] M.H. Ali and G.A. Al-Rubaye “Performance Analysis of 5G New Radio LDPC over Different Multipath Fading Channel Models,” Int. J. Comput. Netw. Inf. Secur., vol. 15, no. 4, pp. 1–12, 2023, doi: 10.5815/ijcnis.2023.04.01.
- [39] H. Zarrinkoub, Understanding LTE with MATLAB: from mathematical foundation to simulation, performance evaluation and implementation, John Wiley & Sons, Ltd, 2014.
- [40] M. Nakagami. “The m-distribution – A General Formula of Intensity Distribution of Rapid Fading,” in W.C. Hoffman: Statistical Methods of Radio Wave Propagation, 1960, pp. 3–36, doi: 10.1016/B978-0-08-009306-2.50005-4.
- [41] D.V. Ha, T.T. Huong, and N.T. Hai, “Performance Investigation of High-Speed Train OFDM Systems under the Geometry-Based Channel Model,” Int. J. Electron. Telecommun., vol. 67, no. 3, pp. 451–457, 2021, doi: 10.24425/ijet.2021.137833.V.
- [42] G.A. Al-rubaye, “Performance of 5G NR-polar QAM-OFDM in nonlinear distortion plus Non-Gaussian noise over Rayleigh fading channel,” AEUE-Int. J. Electron. Commun., vol. 171, p. 154929, 2023, doi: 10.1016/j.aeue.2023.154929.
- [43] C. Xiao, Y.R. Zheng, and N.C. Beaulieu, “Statistical simulation models for Rayleigh and Rician fading,” IEEE International Conference on Communications, 2003. ICC ’03, Anchorage, USA, 2003, vol. 5, pp. 3524–3529, doi: 10.1109/ICC.2003.1204109.
- [44] N. Quoc-tuan, D. Nguyen, and L.S. Cong, “A 10-state model for an AMC scheme with repetition coding in mobile wireless networks,” J. Wirel. Commun. Netw., vol. 2013, p. 219, Sep. 2013. doi: 10.1186/1687-1499-2013-219.
- [45] H. Suzuki, “A statistical model for urban radio propagation,” IEEE Trans. Commun., vol. 25, no. 7, pp. 673–680, Jul. 1977, doi: 10.1109/TCOM.1977.1093888.
- [46] M.K. Simon, Digital Communication over Fading Channel, 2nd Ed., John Wiley & Sons, INC. Publication, 2005.
- [47] A. Laourine, A. Stephenne, and S. Affes, “On the capacity of log-normal fading channels,“ IEEE Trans. Commun., vol. 57, no. 6, pp. 1603–1607, Jun. 2009, doi: 10.1109/TCOMM.2009.06.070109.
- [48] F. Heliot, X. Chu, R. Hoshyar, and R. Tafazolli, “A tight closed-form approximation of the log-normal fading channel capacity,” IEEE Trans. Wirel. Commun., vol. 8, no. 6, pp. 2842–2847, June 2009, doi: 10.1109/TWC.2009.080972.
- [49] P. McCullagh, “Gaussian Distributions,” in Ten Projects in Applied Statistics, Springer Series in Statistics, P. Bühlmann, P. Diggle, U. Gather, and S. Zeger, Eds., Springer, Cham, 2023, pp. 251–277, doi: 10.1007/978-3-031-14275-8_15.
- [50] B. Tahir, S. Schwarz and M. Rupp, “BER comparison between Convolutional, Turbo, LDPC, and Polar codes,” 24th International Conference on Telecommunications (ICT), Limassol, Cyprus, 2017, pp. 1–7, doi: 10.1109/ICT.2017.7998249.
- [51] J. Lu, K.B. Letaief, J.C.-I. Chuang, and M.L. Liou, “M-PSK and M-QAM BER computation using signal-space concepts,” IEEE Trans. Commun., vol. 47, no. 2, pp. 181–184, Feb. 1999, doi: 10.1109/26.752121.
- [52] D. Dinesh and R.S. Selvakumari, “Performance analysis of Min-Sum based LDPC decoder architecture for 5G new radio standards,” Mater. Today-Proc., vol. 62, pp. 4965–4972, 2022, doi: 10.1016/j.matpr.2022.03.693.
- [53] Y. Jiang, A. Ashikhmin, and N. Sharma, “LDPC Codes for Flat Rayleigh Fading Channels with Channel Side Information,” IEEE Trans. Commun., vol. 56, no. 8, pp. 1207–1213, 2008, doi: 10.1109/TCOMM.2008. 041040.
- [54] L. Li, J. Xu, J. Xu, and L. Hu, “LDPC design for 5G NR URLLC & mMTC,” in Proc. IEEE International Conference on Communications, 2020, pp. 1071–1076, doi: 10.1109/ICC40277.2020.9148876.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a89af389-aafe-44d4-b85d-1d4487e95e76