PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of differentiation time of mesenchymal-stem-cell to tenocyte under a cyclic stretching with a microgrooved culture membrane and selected measurement cells

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There is a need for efficient stem cell-to-tenocyte differentiation techniques for tendon tissue engineering. More than 1 week is required for tenogenic differentiation with chemical stimuli, including co-culturing. Research has begun to examine the utility of mechanical stimuli, which reduces the differentiation time to several days. However, the precise length of time required to differentiate human bone marrow-derived mesenchymal stem cells (hBMSCs) into tenocytes has not been clarified. Understanding the precise time required is important for future tissue engineering projects. Therefore, in this study, a method was developed to more precisely determine the length of time required to differentiate hBMSCs into tenocytes with cyclic stretching stimulus. Methods: First, it had to be determined how stretching stimulation affected the cells. Microgrooved culture membranes were used to suppress cell orientation behavior. Then, only cells oriented parallel to the microgrooves were selected and evaluated for protein synthesis levels for differentiation. Results: The results revealed that growing cells on the microgrooved membrane and selecting optimally-oriented cells for measurement improved the accuracy of the differentiation evaluation, and that hBMSCs differentiated into tenocytes in approximately 10 h. Conclusions: The differentiation time corresponded to the time required for cellular cytoskeleton reorganization and cellular morphology alterations. This suggests that cells, when subjected to mechanical stimulus, secrete mRNAs and proteins for both cytoskeleton reorganization and differentiation.
Rocznik
Strony
3--10
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Japan
autor
  • Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Japan
autor
  • Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Japan
autor
  • Department of Micro-Nano Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Japan
Bibliografia
  • [1] AYMOZ D., WOSIKA V., DURANDAU E., PELET S., Real-time quantification of protein expression at the single-cell level via dynamic protein synthesis translocation reporters, Nat. Commun., 2016, 7, 11304.
  • [2] BAGNANINCHI P.O., YANG Y., EL HAJ A.J., MAFFULLI N., Tissue engineering for tendon repair, Brit. J. Sport. Med., 2007, 41(8), e10.
  • [3] BATES N.A., NESBITT R., SHEARN J.T., MYER G.D., HEWETT T.E., Sex-based differences in knee ligament biomechanics during robotically simulated athletic tasks, J. Biomech., 2016, 49(9), 1429–1436.
  • [4] CHAROENPANICH A., WALL M.E., TUCKER C.J., ANDREWS D.M.K., LALUSH D.S., DIRSCHL D.R., LOBOA E.G., Cyclic tensile strain enhances osteogenesis and angiogenesis in mesenchymal stem cells from osteoporotic donors, Tissue Eng. A, 2014, 20(1–2), 67–78.
  • [5] ELEFTERIOU F., EXPOSITO J.Y., GARRONE R., LETHIAS C., Binding of tenascin-X to decorin, FEBS Lett., 2001, 495(1–2), 44–47.
  • [6] EYRE D.R., PAZ M.A., GALLOP P.M., Cross-linking in collagen and elastin, Annu. Rev. Biochem., 1984, 53, 717–748.
  • [7] HADDAD-WEBER M., PRAGER P., KUNZ M., SEEFRIED L., JAKOB F., MURRAY M.M., EVANS C.H., NÖTH U., STEINERT A.F., BMP12 and BMP13 gene transfer induce ligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligament cells, Cytotherapy, 2010, 12(4), 505–513.
  • [8] HAMPSON K., FORSYTH N.R., EL HAJ A., MAFFULLI N., Tendon tissue engineering, in Topics in Tissue Engineering, Vol. 4, eds. Ashammakhi, N., Reis, R., and Chiellini, F., Chapter 3, 2008.
  • [9] HIGASHIURA K., Assessment of the relationship between stretch ratio and the exression levels of mRNAs/proteins in tenogenic differentiation of stem cells under cyclic stimulation, Master thesis, Graduate School of Engineering, Nagoya University, 2017.
  • [10] KUSHIDA N., YAMAGUCHI O., KAWASHIMA Y., AKAIHATA H., HATA J., ISHIBASHI K., AIKAWA K., KOJIMA Y., Uni-axial stretch induces actin stress fiber reorganization and activates c-Jun NH2 terminal kinase via RhoA and Rho kinase in human bladder smooth muscle cells, BMC Urol., 2016, 16, 9.
  • [11] LEE C.H., MOIOLI E.K., MAO J.J., Fibroblastic differentiation of human mesenchymal stem cells using connective tissue growth factor, Conf. Proc. IEEE Eng. Med. Biol. Soc., 2006, 1, 775–778.
  • [12] LEJARD V., BRIDEAU G., BLASIS F., SALINGCARNBORIBOON R., WAGNER G., ROEHRL M.H.A., NODA M., DUPREZ D., HOUILLIER P., ROSSERT J., Scleraxis and NFATc regulate the expression of the pro-alpha1(I) collagen gene in tendon fibroblasts, J. Biol. Chem., 2007, 282(24), 17665–17675.
  • [13] LI Y.H., RAMCHARAN M., ZHOU Z.P., LEONG D.J., AKINBIYI T., MAJESKA R.J.. SUN H.B., The role of scleraxis in fate determination of mesenchymal stem
  • [14] MORITA Y., MUKAI T., JU Y., WATANABE S., Evaluation of stem cell-to-tenocyte differentiation using atomic force microscopy to measure cellular elastic moduli, Cell Biochem. Biophys., 2013, 66(1), 73–80.
  • [15] MORITA Y., SATO T., WATANABE S., JU Y., Determination of precise optimal cyclic strain for tenogenic differentiation of mesenchymal stem cells using a non-uniform deformation field, Exp. Mech., 2015, 55(3), 635–640.
  • [16] MORITA Y., SUZUKI S., JU Y., KAWASE N., Differences between protein expression and extracellular matrix state on uniaxial stretching for tenogenic differentiation, J. Mech. Med. Biol., 2014, 14(2), 1450025.
  • [17] MORITA Y., WATANABE S., JU Y., XU B., Determination of optimal cyclic uniaxial stretches for stem cell-to-tenocyte differentiation under a wide range of mechanical stretch conditions by evaluating gene expression and protein synthesis levels, Acta Bioeng. Biomech., 2013, 15(3), 71–79.
  • [18] NÖTH U., SCHUPP K., HEYMER A., KALL S., JAKOB F., SCHUTZE N., BAUMANN B., BARTHEL T., EULERT J., HENDRICH C., Anterior cruciate ligament constructs fabricated from human mesenchymal stem cells in a collagen type I hydrogel, Cytotherapy, 2005, 7(5), 447–455.
  • [19] PARK A., HOGAN M.V., KESTURU G.S., JAMES R., BALIAN G., CHHABRA A.B., Adipose-derived mesenchymal stem cells treated with growth differentiation factor-5 express tendonspecific markers, Tissue Eng. A, 2010, 16(9), 2941–2951.
  • [20] PITTENGER M.F., MACKAY A.M., BECK S.C., JAISWAL R.K., DOUGLAS R., MOSCA J.D., MOORMAN M.A., SIMONETTI D.W., CRAIG S., MARSHAK D.R., Multilineage potential of adult human mesenchymal stem cells, Science, 1999, 284(5411), 143–147.
  • [21] SHARMA P., MAFFULLI N., Biology of tendon injury: Healing, modeling and remodeling, J. Musculoskelet. Neuronal. Interact., 2006, 6(2), 181–190.
  • [22] SMITH S.L., JOYCE T.J., Mechanical Testing of Orthopaedic Implants (ed. Friis, E.) Woodhead Publishing, 2017, 1830–206.
  • [23] SONG G., JU Y., SOYAMA H., OHASHI T., SATO M., Regulation of cyclic longitudinal mechanical stretch on proliferation of human bone marrow mesenchymal stem cells, Mol. Cell. Biomech., 2007, 4(4), 201–210.
  • [24] TONDON A., HSU H.J., KAUNAS R., Dependence of cyclic stretch-induced stress fiber reorientation on stretch waveform, J. Biomech., 2012, 45(5), 728–735.
  • [25] TSUTSUMI S., SHIMAZU A., MIYAZAKI K., PAN H., KOIKE C., YOSHIDA E., TAKAGISHI K., KATO Y., Retention of multilineage differentiation potential of mesenchymal cells during proliferation in response to FGF, Biochem. Biophys. Res. Commun., 2001, 288(2), 413–419.
  • [26] VISHAVKARMA R., RAGHAVAN S., KUYYAMUDI C., MAJUMDER A., DHAWAN J., PULLARKAT P.A., Role of actin filaments in correlating nuclear shape and cell spreading, PLoS One, 2014, 9(9), e107895.
  • [27] WANG J.H.C., Mechanobiology of tendon, J. Biomech., 2006, 39(9), 1563–1583.
  • [28] ZEICHEN J., VAN GRIENSVEN M., BOSCH U., The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain, Am. J. Sport Med., 2000, 28(6), 888–892.
  • [29] ZHANG L., KAHN C.J.F., CHEN H.Q., TRAN N., WANG X., Effect of uniaxial stretching on rat bone mesenchymal stem cell: Orientation and expressions of collagen types I and III and tenascin-C, Cell Biol. Int., 2008, 32(3), 344–352.
  • [30] ZHANG L., TRAN N., CHEN H.Q., KAHN C.J.F., MARCHAL S., GROUBATCH F., WANG X., Time-related changes in expression of collagen types I and III and of tenascin-C in rat bone mesenchymal stem cells under co-culture with ligament fibroblasts or uniaxial stretching, Cell Tissue Res., 2008, 332(1), 101–109.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a89525b3-6b37-4721-922d-df4fe539944b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.