PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Colour stability of surface finishes on thermally modified beech wood

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Colour stability of surface finishes on thermally modified beech wood. The paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native beech wood and thermally modified wood. At the same time, the colour stability of three surface finishes on the surfaces of native and thermally modified beech wood was monitored. Beech wood was thermally modified at temperature of 125 °C for 6 hours. The thermal treatment was performed in a pressure autoclave APDZ 240, by the company Sundermann s.r.o in Banská Štiavnica. Three various types of surface finishes (synthetic, wax-oil, water-based) were applied onto the wood surfaces. The colour of the surfaces of native wood and thermally modified wood was measured in the system CIELab before and after surface finishing; the coordinates L*, a*, b*, C*ab and h*ab were measured. From the coordinates measured before and after surface finishing, the differences were calculated and then the colour difference ΔE* was calculated. Subsequently, the test specimens with the surface finishes were exposed to natural sunlight, behind glass in the interior for 60 days. The surface colour was measured at specified time of the exposure (10, 20, 30, 60 days). The results showed that the colour of the wood surfaces changed after application of the individual surface finishes; and the colour difference reached a change visible with a medium quality filter up to a high colour difference. The wax-oil surface finish caused a high colour difference on native wood and on thermally modified wood as well. On native beech wood, the lowest colour difference after exposure to sunlight was noticeable on the synthetic surface finish. On the surface of wood thermally modified, after exposure to sunlight, the lowest colour difference was noticeable on the surface with no surface finish.
Twórcy
  • Technical University in Zvolen, Faculty of Wood Sciences and Technology, Department of Furniture and Wood Products, T.G. Masaryka 24, Zvolen, SK 96001, Slovakia
  • Technical University in Zvolen, Faculty of Wood Sciences and Technology, Department of Furniture and Wood Products, T.G. Masaryka 24, Zvolen, SK 96001, Slovakia
Bibliografia
  • 1. CIRULE D., SANSONETTI E., ANDERSONE I., KUKA E., 2021: Andersons B. Enhancing Thermally Modified Wood Stability against Discoloration. Coatings, 11(1):81. https://doi.org/10.3390/coatings11010081.
  • 2. CIVIDINI R., TRAVAN L., ALLEGRETTI O., 2007: White beech: A tricky problem in drying process. In International Scientific Conference on Hardwood Processing, Quebec City, Canada.
  • 3. ČABALOVÁ I., FAČÍK F., LAGAŇA R., VÝBOHOVÁ E., BUBENÍKOVÁ T., ČAŇOVÁ I., ĎURKOVIČ J., 2018: Effect of thermal treatment on the chemical, physical, and mechanical properties of pedunculate Oak (Quercus robur L.) wood. Biores., 13, 157–170. DOI: https://doi.org/10.15376/biores.13.1.157–170.
  • 4. DZURENDA L., DUDIAK M., 2020: The Effect of the Temperature of Saturated Water Steam on the Colour Change of Wood Acer Pseudoplatanus L. Acta Facultatis Xylologiae Zvolen, 62(1): 19−28.
  • 5. DZURENDA L., DUDIAK M., BANSKI A., 2020: Influence of UV radiation on color stability of natural and thermally treated maple wood with saturated water streem. Innovations in woodworking and engineering desing: International scietific journal, 9, 36-41. ISSN 1314-6149.
  • 6. FAN Y., GAO J., CHEN Y., 2010: Colour responses of black locust (Robinia pseudoacacia L.) to solvent extraction and heat treatment. In Wood Sci. Technol., 44, 667–678. DOI: 10.1007/s00226-009-0289-7.
  • 7. HERRERA R., SANDAK J., ROBLES E., KRYSTOFIAK T., LABIDI J., 2018: Weathering resistance of thermally modified wood finished with coatings of diverse formulations. Progress in Organic Coatings, 119, 145–154. https://doi.org/10.1016/j.porgcoat.2018.02.015.
  • 8. HILL C. A. S., 2007: Wood modification: chemical, thermal and other processes, 1st ed., John Wiley & Sons Ltd: Chichester, United Kingdom, 239.
  • 9. HRČKA R., KUČEROVÁ V., HÝROŠOVÁ T., 2018: Correlations between Oak Wood Properties. Biores., 13, 8885–8898. https://doi.org/10.15376/biores.13.4. 8885-8898.
  • 10. CHEN Y., GAO J., FAN Y., TSCHABALALA M. A., STARK N. M., 2012: Heat–induced chemical and color changes of extractive–free black locust (Robinia Pseudoacacia) wood. BioResources, 7(2), 2236–2248. ISSN: 1930-2126.
  • 11. KUČEROVÁ V., LAGAŇA R., HÝROŠOVÁ T., 2019: Changes in chemical and optical properties of silver fir (Abies alba L.) wood due to thermal treatment. J Wood Sci, 65, 21. DOI: https://doi.org/10.1186/s10086-019-1800-x.
  • 12. KÚDELA J., SIKORA A., SVOCÁK J., 2020: Colour stability of spruce wood surface coated with a polyurethane lacquer without and with a UV absorber admixture. In XIII. Konference pigmenty a pojiva: sbornik / conference preceedings. Pardubice: Chemagazín, 28-30. ISBN 978-80-906269-5-9.
  • 13. KÚDELA J., 2017: Accelerated ageing-induced effects on surface properties of wood veneers treated with a modified water-based coating system. Ann. WULS - SGGW, For. and Wood Technol. 98, 59–65.
  • 14. LEE S. H., ASHAARI Z., LUM W. C., HALIP J. A., ANG A. F., TAN L. P., CHIN K. L., TAHIR P. M., 2018: Thermal treatment of wood using vegetable oils: A review. Constr. Build. Mater., 181, 408−419. DOI: https://doi.org/10.1016/j.conbuildmat.2018.06.058.
  • 15. NOWROUZI Z., MOHEBBY B., EBRAHIMI M., PETRIČ M., 2021: Weathering performance of thermally modified wood coated with polyacrylate containing olive leaf extract as a bio-based additive. Eur. J. Wood Prod. (2021). https://doi.org/10.1007/s00107-021-01712-3.
  • 16. OLSSON S. K., JOHANSSON M., WESTIN M., ÖSTMARK E., 2014: Reactive UV-absorber and epoxy functionalized soybean oil for enhanced UV-protection of clear coated wood. Polym. Degrad. Stab., 110, 05–414. DOI: 10.1016/j.polymdegradstab.2014.09.017.
  • 17. PÁNEK M, OBERHOFNEROVÁ E, ZEIDLER A, ŠEDIVKA P., 2017: Efficacy of Hydrophobic Coatings in Protecting Oak Wood Surfaces during Accelerated Weathering. Coatings, 7(10):172. https://doi.org/10.3390/coatings7100172.
  • 18. PENG Y., WANG Y., CHEN P., WANG W., 2020: Jinzhen Cao,Enhancing weathering resistance of wood by using bark extractives as natural photostabilizers in polyurethane-acrylate coating. Progress in Organic Coatings, 145, ISSN 0300-9440, https://doi.org/10.1016/j.porgcoat.2020.105665.
  • 19. POŽGAJ A., KURJATKO S., CHOVANEC D., BABIAK M., 1997: Štruktúra a vlastnosti dreva, Bratislava: Príroda a.s., 483. ISBN 80-07-00960-4.
  • 20. REINPRECHT L., VIDHOLDOVÁ Z., 2011: Thermowood. Šmíra – Print, s.r.o.: Ostrava, Czech Republic; 89 p.
  • 21. SANDBERG D., KUTNAR A., MANTANIS G., 2017: Wood modification technologies-a review. IForest, 10, 895−908. DOI: https://doi.org/10.3832/ifor2380-010.
  • 22. SLABEJOVÁ G., ŠMIDRIAKOVÁ M., 2020: Colour of thermally modified wood finished with transparent coatings. In. Trieskové a beztrieskové obrábanie dreva 2020: vedecký časopis. Zvolen: Technická univerzita vo Zvolene, 97-102. ISSN 1339-8350.
  • 23. TOLVAJ L., FAIX O., 1996: Modification of colour by steaming. In.: Proceedings of the 2nd international conference on the development of wood science / technology and forestry. Sopron: University of Sopron, 1–10.
  • 24. VIDHOLDOVÁ Z., SANDAK A., SANDAK J., 2019: Assessment of the chemical change in heat treated pine wood by Near infrared spectroscopy. Acta Fac Xylologiae Zvolen, 61, 31−42. https://doi.org/10.17423/afx.2019.61.1.03.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8922aa8-0c6e-4df1-b7af-4846cb1d5a40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.