Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Objective: The objective of our study was to analyse the physics and mathematics of the coupling of cardiac sources to body volume and the impact of widespread assumptions on solutions of future electrocardiographic problems. Methods: Based on anatomical and physiological knowledge, we discuss the physical reality of the heart boundary and formulate a new way of setting boundary conditions of future problems based on the boundary element method (BEM) within the SCIRun numerical package. This new type of boundary condition – the ”mixed” method approximating Neumann-Neumann, is compared to standard Dirichlet-Neumann conditions. Results: By anatomical and physiological analysis, we show that there is strong evidence that mass transport, particularly charge transport through the pericardium, is negligible. On the physical ground, it should be assumed instead that the ECG signal spreads through the impermeable barrier as a displacement current that which assumes a nonzero normal component of potential gradient on the boundary. The numerical analysis shows that the new conditions give slightly better results than the standard ones. Notably, the quality of calculations is maintained, although the assumptions are different. Conclusions: We claim that there are both physical and numerical arguments that the assumption that the normal component of a potential gradient must be zero at the heart and body border and can should be relaxed. These findings build convergence between the mathematical ideas and the physical reality of the electrolyte-filled human body. We aim to enhance the diagnostic impact of ECG-based approaches and advance our understanding of cardiac electrophysiology.
Czasopismo
Rocznik
Tom
Strony
159--168
Opis fizyczny
Bibliogr. 28 poz., rys., rys.
Twórcy
autor
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology; Koszykowa street 75, 00-662 Warsaw, Poland
Bibliografia
- 1. Ralapanawa U, Sivakanesan R. Epidemiology and the magnitude of coronary artery disease and acute coronary syndrome: A narrative review. J. Epidemiol. Glob. Health. 2021;11(2):169-77.
- 2. Sinha A, Rahman H, Perera D. Coronary microvascular disease: current concepts of pathophysiology, diagnosis and management. Cardiovasc. Endocrinol. Metab. 2021;10(1):22-30.
- 3. Cluitmans MJ, Peeters RL, Westra RL, Volders PG. Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges. Neth Heart J. 2015;23(6):301-11.
- 4. MacLeod R, Buist M. The Forward Problem of Electrocardiography. In: Macfarlane PW, van Oosterom A, Pahlm O, Kligfield P, Janse M, Camm J, editors. Comprehensive Electrocardiology. London: Springer; 2010. pp. 247-98.
- 5. Cluitmans M. Noninvasive reconstruction of cardiac electrical activity: Mathematical innovation, in vivo validation and human application [dissertation]. Maastricht: Maastricht University; 2016.
- 6. Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis JB, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society, Circulation. Heart Rhythm. 2018 Oct;15(10):e190-e252.
- 7. Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac Death. The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology. G Ital Cardiol (Rome). 2016;17(2):108-70.
- 8. AlGhatrif M, Lindsay J. A brief review: history to understand fundamentals of electrocardiography. J. Community Hosp. Intern. Med. Perspect. 2012;2(1):14383.
- 9. Bacharova L, Schocken D, Estes EH, Strauss D. The role of ECG in the diagnosis of left ventricular hypertrophy. Curr. Cardiol. Rev. 2014;10(3):257-61.
- 10. Pullan AJ, Cheng LK, Nash MP, Ghodrati A, MacLeod R, Brooks DH. The inverse problem of electrocardiography. In: Macfarlane PW, van Oosterom A, Pahlm O, Kligfield P, Janse M, Camm J, editors. Comprehensive Electrocardiology. London: Springer; 2010. pp. 299-344.
- 11. Malmivuo J, Plonsey R. Bioelectromagnetism – Principles and Applications of Bioelectric and Biomagnetic Fields. New York: Oxford University Press; 1995.
- 12. Plonsey R, van Oosterom A. Introductory Physics and Mathematics. In: Macfarlane PW, van Oosterom A, Pahlm O, Kligfield P, Janse M, Camm J, editors. Comprehensive Electrocardiology. London: Springer; 2010. pp. 49-101.
- 13. Amri A, Bellassoued M, Mahjoub M, Zemzemi N. Analysis of the heart-torso conductivity parameters recovery inverse problem in cardiac electro-physiology ECG modelling. Appl. Anal. 2023;102(2):494-523.
- 14. Wang T, Karel J, Bonizzi P, Peeters RLM. Influence of the Tikhonov Regularization Parameter on the Accuracy of the Inverse Problem in Electrocardiography. Sensors. 2023; 23(4):1841.
- 15. Zemzemi N. A Steklov-Poincare approach to solve the inverse problem in electrocardiography. In: Computing in Cardiology 2013: Computing in Cardiology 2013; 2013 Sep 22-25; Zaragoza, Spain. New Jersey: IEEE; 2013. pp. 703-6.
- 16. Gibson AT, Segal MB. A study of the composition of pericardial fluid, with special reference to the probable mechanism of fluid formation. Physiol. J. 1978;277(1):367-77.
- 17. Buchner T. On the physical nature of biopotentials, their propagation and measurement. Physica A. 2019;525:85-95.
- 18. Pietak A, Levin M. Exploring Instructive Physiological Signaling with the Bioelectric Tissue Simulation Engine. Front Bioeng Biotechnol. 2016;4:55.
- 19. Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos. 1998;8(1):20-47.
- 20. Lessard-Tremblay M, Weeks J, Morelli L, Cowan G, Gagnon G, Zednik RJ. Contactless capacitive electrocardiography using hybrid flexible printed electrodes. Sensors (Basel). 2020;20(18):5156.
- 21. Barr RC, Ramsey M, Spach MS. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans. Biomed. Eng. 1977;1:1-11.
- 22. Stanley PC, Pilkington TC, Morrow MN. The effects of thoracic inhomogeneities on the relationship between epicardial and torso potentials. IEEE Trans. Biomed. Eng. 1986;3:273-84.
- 23. De Munck JC. A linear discretization of the volume conductor boundary integral equation using analytically integrated elements (electrophysiology application). IEEE Trans. Biomed. Eng. 1992; 39(9):986-90.
- 24. Hunter P, Pullan A. FEM/BEM Notes. The University of Auckland. Journal contribution. doi: https://doi.org/10.17608/k6.auckland.5440000.v1.
- 25. Halnes G, Ostby I, Pettersen KH, Omholt SW, Einevoll GT. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Comput. Biol. 2013;9(12):e1003386.
- 26. Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods. 2005;141(2):171-98.
- 27. Coll-Font J, Dannhauer M, Steffen M, Swenson D, Wang D, Erem B, et al. editors. Scirun forward/inveJ. ecg toolkit [Internet] [cited 2024 Nov 5]. Available from: https://www.sci.utah.edu/software/ scirun/forward-inverse-toolkit.html.
- 28. Shabetai R, Surawicz B, Hammill W. Monophasic aW. n potentials in man. Circulation. 1968;38(2):341-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a88f50d5-2f5a-400b-b28c-5f2aa9454561
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.