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Abstract  
 

The model of system operation total cost during the fixed operation time is introduced and the proce-
dure of its minimization is presented. The model of system safety impacted by operation process is in-
troduced and the procedure of its safety maximization is proposed. To analyse jointly the system oper-
ation cost and safety optimization, we propose the procedure of determining the optimal values of limit 
transient probabilities of the system operation process at the particular operation states that allows to 
find the minimal operation total cost during the fixed operation time, through applying the created 
system general operation cost model in the fixed operation time and linear programming. Next, to find 
the system conditional safety indicators, corresponding to this system minimal total operation cost 
during the fixed operation time, we replace the limit transient probabilities in particular operation 
states, existing in the formula for the system safety function coordinates, by their optimal values 
existing in the formula for the system minimal total cost during the fixed operation time. Further, 
applying this formula for the system conditional safety function coordinates, related to the system 
minimal operation total cost during the fixed operation time, we find the remaining system conditional 
safety indicators. The created models are applied to the maritime ferry technical system to minimize 
the mean value of the system operation total cost during the fixed operation time of one month and to 
maximize its safety indicators. After that, the ferry technical system safety indicators corresponding to 
its minimal mean value of operation total cost are found. The evaluation of results achieved is per-
formed and the perspective for future research in the field of the complex systems including critical 
infrastructures operation costs and safety joint analysis and optimization is given.  
 
1. Introduction  
 

To tie the investigation of the complex technical 
system operation cost together with the investi-
gation of its safety, the semi-Markov process 
model (Ferreira & Pacheco, 2007; Glynn et al., 
2006; Grabski, 2002, 2014; Limnios & Oprisan, 
2005; Mercier, 2008; Tang et al., 2007) can be 
used to describe this system operation process 
(Kołowrocki & Soszyńska-Budny, 2011/2015; 
Magryta, 2020). 

Having the system operation process characteris-
tics and the system conditional instantaneous 
operation costs at the operation states, it is possi-
ble to create the system general operation total 
cost model during the fixed operation time 
(Kołowrocki & Magryta, 2020a, 2021). Using 
this system operation cost model, it is possible to 
change the system operation process through 
applying the linear programming (Klabjan & 
Adelman, 2006) for minimizing the system oper-
ation cost (Kołowrocki & Magryta, 2020a, 2021) 
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and finding optimal values of the system limit 
transient probabilities in the particular operation 
states.  
The system operation process model, under the 
assumption on the system safety structure multi-
state model (Xue, 1985; Xue & Yang, 1995), can 
be used to construct the general safety model of 
the complex multistate system changing its safe-
ty structure and its components safety parameters 
during variable operation process (Kołowrocki, 
2014; Kołowrocki & Magryta, 2020a; Kołow-
rocki & Soszyńska-Budny, 2011/2015; Magryta, 
2020). Further, using this general model, it is 
possible to define the complex system main safe-
ty characteristics such as the system safety func-
tion, the mean values and standard deviations of 
the system lifetimes in the system safety state 
subsets and the system mean lifetimes in system 
safety subsets (Dąbrowska, 2020a-b; Kołow-
rocki, 2014, 2020; Kołowrocki & Soszyńska-
Budny, 2010a-b, 2011/2015). Other system safe-
ty indicators, like the system risk function, the 
system fragility curve, the moment when the 
system risk function exceeds a permitted level, 
the system intensity of ageing, the coefficient of 
system operation impact on system intensity of 
ageing and the system resilience indicator to op-
eration process impact, can be introduced as well 
(Gouldby et al., 2010; Kołowrocki, 2014; 
Kołowrocki & Soszyńska-Budny, 2018a-b, 
2019a-b; Lauge et al., 2015; Szymkowiak, 
2018a-b, 2019). 
To analyse jointly the system operation cost and 
safety optimization, we firstly apply the proce-
dure of determining the optimal values of limit 
transient probabilities of the system operation 
process at the particular operation states that 
minimize the system operation total cost during 
the fixed operation time. Next, to find the system 
conditional safety indicators, corresponding to 
this system minimal total operation cost during 
the fixed operation time, we replace the limit 
transient probabilities at the system particular 
operation states, existing in the formula for the 
system safety function, by their optimal values 
existing in the formula for the system minimal 
operation total cost during the fixed operation 
time in order to get thee formula for the system 
conditional safety function related to this system 
minimal operation total cost. Further, applying 
this formula for the system conditional safety 
function, we find the remaining system condi-

tional safety indicators.  
The created model for minimizing of the system 
operation total cost during the fixed operation 
time is applied to the maritime ferry technical 
system to find the minimal mean value of the 
system operation total cost during the fixed oper-
ation time of one month. Next, the ferry technical 
system safety indicators corresponding to this 
minimal operation total cost are found.  
The chapter is organized into 7 parts, this Intro-
duction as Section 1, Sections 2–6 and Conclu-
sion as Section 7. In Section 2, the model of sys-
tem operation total cost during the fixed opera-
tion time is introduced and the procedure of its 
minimization is presented. In Section 3, the 
model of system safety impacted by operation 
process is introduced and the procedure of the 
system safety maximization is proposed. In Sec-
tion 4, the maritime ferry technical system opera-
tion process and operation total cost during one 
month are analyzed and the minimal value of this 
system operation total during the examined oper-
ation time is determined. In Section 5, the mari-
time ferry technical system operation process 
influence on its safety indicators is examined and 
the maximal values of this system safety indica-
tors impacted by its operation process are deter-
mined. In Section 6, joint analysis of the ferry 
technical system operation total cost during one 
month minimizing and its conditional safety in-
dicators corresponding to this system minimal 
operation total cost is performed. The system 
minimal operation total cost is fixed and the sys-
tem safety indicators corresponding to this min-
imal operation total cost are determined. In Con-
clusion, the evaluation of results achieved is 
done and the perspective for future research in 
the field of the complex systems including criti-
cal infrastructures and their operation costs joint 
analysis and optimization is proposed. 
 
2. System operation cost 
 

2.1. System operation cost model  
 

We assume that the system is operating at ν, 
ν > 1, operation states ,bz  b = 1,2,…,ν, that have 
influence on the system functional structure and 
on the system operation cost. Assuming semi-
Markov model of the system operation process 
Z(t),  ≥ 0, it is possible to find this process two 
basic characteristics (Grabski, 2014; Kołowrocki 
& Magryta, 2020a; Kołowrocki & Soszyńska-
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Budny, 2011/2015):  
• the vector of limit values  

 
bp  = ),(lim tpb

t ∞→
 b = 1,2,…,ν, (1) 

 
of transient probabilities  
 

)(tpb = P(Z(t) = ),bz   ≥ 0, b = 1,2,…,ν, (2) 
 
of the system operation process )(tZ  at the 
particular operation states ,bz  b = 1,2,…,ν, 

• the vector νx1]ˆ[ bM of the mean values 
 

,]ˆ[ˆ θθ bbb pEM ≅=  b = 1,2,…,ν, (3) 
 
of the total sojourn times ,b̂θ  b = 1,2,…,ν,  
of the system operation process ),(tZ   ≥ 0,  
at the particular operation states ,bz   
b = 1,2,…,ν, during the fixed the system 
operation time ,θ  ,0>θ  where ,bp   
b = 1,2,…,ν, are defined by (1)–(2).  

Further, we may define the system instantaneous 
operation cost. Namely, we define the instanta-
neous system operation cost in the form of the 
vector  
 
C(t) = [[C(t)](1), C(t)](2), …, )()]([ νtC ],  ≥ 0, (4) 
 
with the coordinates  
 
[C(t)](b),  ≥ 0,  b = 1,2,…,ν, (5) 
 
that are the system conditional instantaneous 
operation costs at the system operation states ,bz
b = 1,2,…,ν.  
It is natural to assume that the system operation 
total cost during the fixed operation time de-
pends significantly on the system operation total 
costs at the particular operation states. This de-
pendency is clearly expressed in mean value of 
the system total operation cost during the system 
operation time ,θ given by  
 

,)]([)(
1

)(∑
=

=
ν

θθ
b

b
b CpC ,0>θ  (6) 

 
where ,bp  b = 1,2,…,ν, are limit transient proba-

bilities at operation states defined by (1)–(2), and 
,)]([ )(bC θ  b = 1,2,…,ν, are the mean values of 

the system conditional operation total costs at the 
particular system operation states zb, b = 1,2,…,ν, 
given by  
 

,)][()]([
ˆ

0

)()( ∫=
bM

bb dttCC θ ,0>θ b = 1,2,…,ν, (7) 

 
where ,ˆ

bM  b = 1,2,…,ν, are given by (3), and 
[C(t)](b),  ≥ 0, b = 1,2,…,ν, are defined by (5). 
 
2.2. System operation cost optimization model 
 

In Section 2.1 we described system operation 
cost model. From the linear equations (6), we can 
see that the mean value of the system total un-
conditional operation cost ),(θC ,0>θ is deter-
mined by the limit values of transient probabili-
ties ,bp  b = 1,2,…,ν, of the system operation 
process at the operation states ,bz  b = 1,2,…,ν, 
defined by (1)–(2) and by the mean values 

,)]([ )(bC θ  ,0>θ  b = 1,2,…,ν, of the system 
conditional total operation costs at the particular 
system operation states ,bz  b = 1,2,…,ν, deter-
mined by (7). Therefore, the system operation 
cost optimization based on the linear program-
ming (Klabjan & Adelman, 2006), can be pro-
posed. Namely, we may look for the correspond-
ing optimal values ,bp&  b = 1,2,…,ν, of the limit 
transient probabilities ,bp  b = 1,2,…,ν, of the 
system operation process at the operation states 
to minimize the mean value C(θ) of the system 
unconditional operation total cost under the as-
sumption that the mean values ,)]([ )(bC θ   
b = 1,2,…,ν, of the system conditional total oper-
ation costs at the particular operation states ,bz   
b = 1, 2,…,ν, are fixed.  
Thus, we may formulate the optimization prob-
lem as a linear programming model with the ob-
jective function of the form given by (6) with the 
bound constraints 
 

,bbb ppp )( ≤≤  b = 1,2,…,ν, ,1
1

∑
=

=
ν

b
bp  (8) 

 
where 
 

,)]([ )(bC θ  ,0)]([ )( ≥bC θ  b = 1,2,…,ν, (9) 
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are fixed mean values of the system conditional 
operation costs at the operation states ,bz   
b = 1,2,…,ν, determined according to (7) and 
 

,bp( 10 ≤≤ bp(  and ,bp) ,10 ≤≤ bp) ,bb pp )( ≤   
 
b = 1,2,…,ν, (10) 
 
are lower and upper bounds of the unknown tran-
sient probabilities ,bp  b = 1,2,…,ν, respectively.  
Now, we can find the optimal solution of the 
formulated by (6), (8)–(10) the linear program-
ming problem, i.e. we can determine the optimal 
values bp&  of the transient probabilities ,bp   
b = 1,2,…,ν, that minimize the objective function 
given by (6). The minimizing procedure is de-
scribed in (Magryta, 2021). 
Finally, after applying this procedure, we can get 
the minimum value of the system total uncondi-
tional operation cost, defined by the linear form 
(6), in the following form  
 

∑
=

=
ν

θθ
1

)( .)]([)(
i

b
bp C&&C   (11) 

 
3. System safety  
 

3.1. System safety model 
 

Considering the safety function of the system 
impacted by operation process 
 
S(t,·) = [S(t,1), S(t,2),…, S(t,z)],  ≥ 0,  (12) 
 
coordinate given by (Kołowrocki & Soszyńska-
Budny, 2011/2015) 
  

∑
=

≅
ν

1

)( ,)],([),(
b

b
b utput SS   ≥ 0,  

 
u = 1,2,…,z, (13) 
 
where pb, b = 1,2,…,ν, are the limit transient 
probabilities of the system operation process at 
the operation states zb, b = 1,2,…,ν, and  
 
[S(t,u)](b) = P([T(u)](b) > t),  ≥ 0, u = 1,2,…,z,  
 
b = 1,2,…,ν,  
at these operation states are the conditional safe-
ty functions of the system and [T(u)](b), are the 

system conditional lifetimes in the safety state 
subsets {u,u+1,…,z}, u = 1,2,…,z, at the opera-
tion states zb, b = 1,2,…,ν, it is natural to assume 
that the system operation process has a signifi-
cant influence on the system safety.  
From the expression (12), the mean values of the 
system unconditional lifetimes in the safety state 
subsets {u,u+1,…,z}, are of the form  
 

[ ]∑
=

=
ν

1

)()()(
b

b
b uμpuμ for u = 1,2,…,z. (14) 

 
The values of the variances of the system uncon-
ditional lifetimes in the system safety state sub-
sets are 
 

,])([),(2)]([ )2(

0

2 udtuttu μS −= ∫
∞

σ  u = 1,2,…,z  

 (15) 
 
where  ( ) is given by (14) and  ( , ) is given 
by (13).  
The expressions for the mean values of the sys-
tem unconditional lifetimes in the particular safe-
ty states are  
 

),1()()( +−= uuu μμμ  u = 1,2,…,z – 1,  
 

).()( zz μμ =   (16) 
 
The system risk function and the moment when 
the risk exceeds a permitted level δ, respectively 
are given by (Kołowrocki & Soszyńska-Budny, 
2011/2015): 
 

),,(1)( rtt Sr −=   ≥ 0, (17) 
 
and 
 

),(-1 δτ r=  (18) 
 
where S(t,r) is given by (13) for u = r and ),(-1 tr  
if it exists, is the inverse function of the risk 
function ).(tr   
The mean values of the system intensities of age-
ing (departure from the safety state subset 
{u,u+1,…,z}), are defined by  
 

.,...,2,1,
)(

1)( zu
u

u ==
μ

λ  (19) 
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Considering the values of the system without 
operation impact intensities of ageing λ0(u), de-
fined in (Kołowrocki & Soszyńska-Budny, 
2018b; Kołowrocki & Magryta-Mut, 2020c), the 
coefficients of the operation process impact on 
the system intensities of ageing are given by  
 

.,...,2,1,
)(
)()( zu

u
uu == oλ

λρ   (20) 

 
Finally, the system resilience indicators, i.e. the 
coefficients of the system resilience to operation 
process impact, are  
 

.,...,2,1,
)(

1)( zu
u

u ==
ρ

RI  (21) 

 
3.2. System safety optimization 
  

Considering the safety function of the system 
impacted by operation process S(t,·),  ≥ 0, co-
ordinate given by (13), it is natural to assume 
that the system operation process has a signifi-
cant influence on the system safety. This influ-
ence is also clearly expressed in the equation 
(14) for the mean values of the system uncondi-
tional lifetimes in the safety state subsets. From 
the linear equation (14), we can see that the mean 
value of the system unconditional lifetime µ(u), 
u = 1,2,…,z, is determined by the limit values of 
transient probabilities pb, b = 1,2,…,ν, of the 
system operation process at the operation states 
zb, b = 1,2,…,ν, and the mean values [µ(u)](b),  
b = 1,2,…,ν, u = 1,2,…,z, of the system condi-
tional lifetimes in the safety state subsets 
{u,u+1,…,z}, u = 1,2,…,z, at these operation 
states. Therefore, the system lifetime optimiza-
tion based on the linear programming can be 
proposed (Klabjan & Adelman, 2006). Namely, 
we may look for the corresponding optimal val-
ues ,bp&  b = 1,2,…,ν, of the transient probabilities 
pb, b = 1,2,…,ν, of the system operation process 
at the operation states to maximize the mean val-
ue µ(u) of the unconditional system lifetime in 
the safety state subsets {u,u+1,…,z}, 
u = 1,2,…,z, under the assumption that the condi-
tional mean values [µ(u)](b), b = 1,2,…,ν,  
u = 1,2,…,z, of the system conditional lifetimes 
in the safety state subsets at the particular opera-
tion states are fixed. As a special case of the 
above formulated system lifetime optimization, if 

r, r = 1,2,…,z, is a system critical safety state, we 
want to find the optimal values ,bp&  b = 1,2,…,ν, 
of the transient probabilities pb, b = 1,2,…,ν, of 
the system operation process at the system opera-
tion states to maximize the mean value µ(r) of 
the unconditional system lifetime in the safety 
state subset {r,r+1,…,z}, r = 1,2,…,z, under the 
assumption that the mean values [µ(r)](b),  
b = 1,2,…,ν, u = 1,2,…,z, of the system condi-
tional lifetimes in this safety state subset at the 
particular operation states are fixed. More exact-
ly, we formulate the optimization problem as a 
linear programming model with the objective 
function of the following form  
 

∑
=

=
ν

1

)( ,)]([)(
b

b
b rμprμ  (22) 

 
for a fixed r ϵ {1,2,…,z} and with the following 
bound constraints 
 

,bbb ppp )( ≤≤  b = 1,2,…,ν, (23) 
 

∑
=

=
ν

1
,1

b
bp  (24) 

 
where 
 

)()]([ brµ , ,0)]([ )( ≥brµ  b = 1,2,…,ν, (25) 
 
are fixed mean values of the system conditional 
lifetimes in the safety state subset {r,r+1,…,z} 
and  
 

,bp(  10 ≤≤ bp(  and ,bp)  ,10 ≤≤ bp)  ,bb pp )( ≤   
 
b = 1,2,…,ν, (26) 
 
are lower and upper bounds of the unknown tran-
sient probabilities pb, b = 1,2,…,ν, respectively.  
Now, we can obtain the optimal solution of the 
formulated by (22)–(26) the optimization prob-
lem, i.e. we can find the optimal values bp&  of the 
transient probabilities ,bp  b = 1,2,…,ν, that 
maximize the objective function given by (22). 
The maximizing procedure is described in 
(Kołowrocki & Magryta, 2020b; Magryta-Mut, 
2020). 
Finally, after applying this procedure, we can get 
the maximum value of the system total mean 
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lifetime in the safety state subset {r,r+1,…,z} 
defined by the linear form (22), in the following 
form 
 

∑
=

=
ν

µ
1

)()]([)(
b

b
b rpr &&μ  (27) 

 
for a fixed r ϵ {1,2,…,z}.  
Further, by replacing the limit transient probabil-
ities pb, b = 1,2,…,ν, existing in the formulae 
(12)–(14) by their optimal values bp& , 
b = 1,2,…,ν, we get the optimal form of the sys-
tem safety and the expressions for all remaining 
safety indicators considered in Section 3.1. 
 
4. Maritime ferry technical system operation 

cost 
 

4.1. Operation process  
 

We will examine the operation cost of a selected 
maritime ferry technical system that is a member 
of the shipping critical infrastructure. The con-
sidered maritime ferry is described in (Kołow-
rocki et al., 2016; Kołowrocki & Magryta-Mut, 
2020c; Magryta-Mut, 2020).  
The maritime ferry operation process Z(t),  ≥ 0, 
was identified and specified in (Kołowrocki et 
al., 2016). Having regards to the opinions of ex-
perts on the varying in time operation process of 
the pondered maritime ferry system, we identify 
the eighteen operation states: 
• an operation state z1 – loading at Gdynia Port,  
• an operation state z2 – unmooring operations 

at Gdynia Port, 
• an operation state z3 – leaving Gdynia Port 

and navigation to “GD” buoy, 
• an operation state z4 – navigation at restricted 

waters from “GD” buoy to the end of Traffic 
Separation Scheme, 

• an operation state z5 – navigation at open wa-
ters from the end of Traffic Separation 
Scheme to “Angoering” buoy, 

• an operation state z6 – navigation at restricted 
waters from “Angoering” buoy to “Verko” 
berth at Karlskrona, 

• an operation state z7 – mooring operations at 
Karlskrona Port, 

• an operation state z8 – unloading at Karlskro-
na Port, 

• an operation state z9 – loading at Karlskrona 
Port,  

• an operation state z10 – unmooring operations 
at Karlskrona Port, 

• an operation state z11 – ferry turning at Karls-
krona Port,  

• an operation state z12 – leaving Karlskrona 
Port and navigation at restricted waters to 
“Angoering” buoy, 

• an operation state z13 – navigation at open 
waters from “Angoering” buoy to the entering 
Traffic Separation Scheme, 

• an operation state z14 – navigation at restricted 
waters from the entering Traffic Separation 
Scheme to “GD” buoy, 

• an operation state z15 – navigation from “GD” 
buoy to turning area, 

• an operation state z16 – ferry turning at Gdynia 
Port,  

• an operation state z17 – mooring operations at 
Gdynia Port, 

• an operation state z18 – unloading at Gdynia 
Port. 

To identify the unknown parameters of the ferry 
technical system operation process the suitable 
statistical data coming from its real realizations 
should be collected. It is possible to collect these 
data because of the high frequency of the ferry 
voyages that result in a large number of its tech-
nical system operation process realizations. The 
ferry technical system operation process is very 
regular in the sense that the operation state 
changes are from the particular state zb,  
b = 1,2,…,17, to the neighboring state ,1+bz   
b = 1,2,…,17, and from z18 to z1 only. 
The ferry technical system operation process Z(t) 
characteristics are: 
• the limit values of transients probabilities pb, 

of the operation process Z(t) at the particular 
operation states zb, b = 1,2,…,18, (Kołowrocki 
& Magryta, 2020a, 2021; Kołowrocki & So-
szyńska-Budny, 2011/2015):  

 
p1 = 0.038, p2 = 0.002, p3 = 0.026,  
p4 = 0.036, p5 = 0.363, p6 = 0.026,  
p7 = 0.005, p8 = 0.016, p9 = 0.037,  
p10 = 0.002, p11 = 0.003, p12 = 0.016,  
p13 = 0.351, p14 = 0.034, p15 = 0.024,  
p16 = 0.003, p17 = 0.005, p18 = 0.013. (28) 
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4.2. Operation cost 
 

According to the information coming from ex-
perts, the approximate values of the instantane-
ous operation cost per hour of the subsystems 
arbitrarily assumed in comparison to the un-
known amount c are: 
• for the navigational subsystem S1 used at the 

operation state ,bz b = 1, 2,…, 18, is constant 
and amounts 20c, whereas, the cost of this 
subsystem when is not used equal to 10c; 

• for the propulsion and controlling subsystem 
S2 used at the operation state ,bz b = 2, 3, 6, 7, 
10, 11, 15, 16, 17, is constant and amounts 
75c, at the operation state ,bz b = 4, 5, 12, 13, 
14, is constant and amounts 55c, whereas, the 
cost of this subsystem when not used is equal 
to 25c; 

• for the loading and unloading subsystem S3 
used at the operation state ,bz  b = 1, 18, is 
constant and amounts 30c, at the operation 
state ,bz b = 8, 9, is constant and amounts 20c, 
whereas, the cost of this subsystem when not 
used is equal to 10c; 

• for the stability control subsystem S4 used at 
the operation state ,bz  b = 1, 4, 5, 6, 8, 9, 12, 
13, 14, 18, is constant and amounts 13c, 
whereas, the cost of this subsystem when not 
used is equal to 10c; 

• for the anchoring and mooring subsystem S5 
used at the operation state ,bz  b = 2, 7, 10, 17, 
is constant and amounts 30c, whereas, the cost 
of this subsystem when is not used equal to 
5c. 

Through (3) and (28), the approximate mean 
values ,ˆ

bM  of total sojourn times of the ferry 
technical system at the particular operation states 
during the operation time θ = 1 month = 30 days 
= 720 hours: 
 

1M̂  = 27.36, 2M̂  = 1.44, 3M̂  = 18.72 ,  

4M̂  = 25.92, 5M̂  = 261.36, 6M̂ = 18.72,  

7M̂  = 3.6, 8M̂  = 11.52, 9M̂  = 26.64,  

10M̂  = 1.44, 11M̂  = 2.16, 12M̂  = 11.52,  

13M̂ = 252.72, 14M̂  = 24.48, 15M̂  = 17.28,  

16M̂  = 2.16, 17M̂  = 3.6, 18M̂  = 9.36. (29) 

Hence, the subsystems S1, S2, S3, S4, S5 use at 
particular operation states implies that the system 
at the particular operation states conditional in-
stantaneous operation costs per hour [C(t)](b), 

1,0∈t , b = 1,2,…,18, during the operation time 
interval of 1=θ month, introduced by (5), are: 
 
[C(t)](1) = 93c, [C(t)](2) = 145c,  
[C(t)](3) = 120c, [C(t)](4) = 103c,  
[C(t)](5) = 103c, [C(t)](6) = 123c,  
[C(t)](7) = 145c, [C(t)](8) = 83c,  
[C(t)](9) = 83c, [C(t)](10) = 145c,  
[C(t)](11) = 120c, [C(t)](12) = 103c,  
[C(t)](13) = 103c, [C(t)](14) = 103c,  
[C(t)](15) = 120c, [C(t)](16) = 120c,  
[C(t)](17) = 145c, [C(t)](18) = 93c. (30) 
 
Applying the formula (7) to (30) and (29), we get 
the approximate mean values [C(θ)](b),  
b = 1,2,…,18, of the total operation costs at the 
operation state zb, b = 1,2,…,18, during the oper-
ation time 1=θ month = 720 hours: 
 
[C(t)](1) = 93c·27.36 = 2554.48c,  
[C(t)](2) = 145c·1.44 = 208.8c,  
[C(t)](3) = 120c·18.72 = 2246.4c,  
[C(t)](4) = 103c·25.92 = 2669.76c,  
[C(t)](5) = 103c·261.36 = 26920.08c,  
[C(t)](6) = 123c·18.72 = 2302.56c,  
[C(t)](7) = 145c·3.6 = 522c,  
[C(t)](8) = 83c·11.52 = 965.16c,  
[C(t)](9) = 83c·26.64 = 2211.12c,  
[C(t)](10) = 145c·1.44 = 208.8c,  
[C(t)](11) = 120c·2.16 = 259.2c,  
[C(t)](12) = 103c·11.52 = 1186.56c,  
[C(t)](13) = 103c·252.72 = 26030.16c,  
[C(t)](14) = 103c·24.48 = 2521.44c,  
[C(t)](15) = 120c·17.28 = 2073.6c,  
[C(t)](16) = 120c·2.16 = 259.2c,  
[C(t)](17) = 145c·3.6 = 522c,  
[C(t)](18) = 93c·9.36 = 870.48c. (31) 
 
Considering the values of the total costs [C(θ)](b), 
b = 1,2,…,18, from (31) and the values of transi-
ent probabilities ,bp  b = 1,2,…,18, given by 
(28), the ferry technical system total operation  
mean cost during the operation time  
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θ = 1 month = 720 hours, according to (6), is 
given by 
 
C(θ) ≅ p1[C(θ)](1) + p2[C(θ)](2) + p3[C(θ)](3)  

+ p4[C(θ)](4) + p5[C(θ)](5) + p6[C(θ)](6)  
+ p7[C(θ)](7) + p8[C(θ)](8) + p9[C(θ)](9)  
+ p10[C(θ)](10) + p11[C(θ)](11) + p12[C(θ)](12)  
+ p13[C(θ)](13) + p14[C(θ)](14) + p15[C(θ)](15)  
+ p16[C(θ)](16) + p17[C(θ)](17) + p18[C(θ)](18) 
≅ 0.038⋅2554.48c + 0.002⋅208.8c  
+ 0.026⋅2246.4c + 0.036⋅2669.76c  
+ 0.363⋅26920.08c + 0.026⋅2302.56c  
+ 0.005⋅522c + 0.016⋅965.16c  
+ 0.037⋅2211.12c + 0.002⋅208.8c  
+ 0.003⋅259.2c + 0.016⋅1186.56c  
+ 0.351⋅26030.16c + 0.034⋅2521.44c  
+ 0.024⋅2073.6c + 0.003⋅259.2c  
+ 0.005⋅522c + 0.013⋅870.48c  
≅ 19490.17c. (32) 

 
4.3. Cost optimization  
 

Applying (32), to find the minimum value of the 
ferry technical system mean cost, we define the 
objective function given by (6), in the following 
form  
 
C(θ) ≅ p1⋅2554.48c + p2⋅208.8c  

+ p3⋅2246.4c + p4⋅2669.76c  
+ p5⋅26920.08c + p6⋅2302.56c  
+ p7⋅522c + p8⋅965.16c + p9⋅2211.12c  
+ p10⋅208.8c + p11⋅259.2c + p12⋅1186.56c 
+ p13⋅26030.16c + p14⋅2521.44c  
+ p15⋅2073.6c + p16⋅259.2c  
+ p17⋅522c + p18⋅870.48c.  (33) 

 
The lower ,bp(  and upper bp)  bounds of the un-
known optimal values of transient probabilities 

,bp  b = 1,2,…,18, respectively are (Kołowrocki 
& Magryta, 2020a, 2021; Kołowrocki & So-
szyńska-Budny, 2011/2015): 
 

1p(  = 0.0006, 2p(  = 0.001, 3p(  = 0.018,  

4p(  = 0.027, 5p(  = 0.286, 6p(  = 0.018,  

7p(  = 0.002, 8p(  = 0.001, 9p(  = 0.001,  

10p(  = 0.001, 11p(  = 0.002, 12p( = 0.013,  

13p( = 0.286, 14p(  = 0.025, 15p(  = 0.018,  

16p(  = 0.002, 17p(  = 0.002, 18p(  = 0.001, 
 

1p)  = 0.056, 2p)  = 0.002, 3p)  = 0.027,  

4p) = 0.056, 5p) = 0.780, 6p) = 0.024,  

7p)  = 0.018, 8p)  = 0.018, 9p)  = 0.056,  

10p)  = 0.003, 11p)  = 0.004, 12p)  = 0.024,  

13p)  = 0.780, 14p)  = 0.043, 15p)  = 0.024,  

16p)  = 0.004, 17p)  = 0.007, 18p)  = 0.018.  (34) 
 
Therefore, according to (9)–(10), we assume the 
following bound constraints  
 
0.0006 ≤ p1 ≤ 0.056, 0.001≤ p2 ≤ 0.002,  
0.018 ≤ p3 ≤ 0.027, 0.027 ≤ p4 ≤ 0.056,  
0.286 ≤ p5 ≤ 0.780, 0.018 ≤ p6 ≤ 0.024,  
0.002 ≤ p7 ≤ 0.018, 0.001 ≤ p8 ≤0.018,  
0.001 ≤ p9 ≤ 0.056, 0.001 ≤ p10 ≤ 0.003,  
0.002 ≤ p11 ≤ 0.004, 0.013 ≤ p12 ≤ 0.024, 
0.286 ≤ p13 ≤ 0.780, 0.025 ≤ p14 ≤ 0.043,  
0.018 ≤ p15 ≤ 0.024, 0.002 ≤ p16 ≤ 0.004,  
0.002 ≤ p17 ≤ 0.007, 0.001 ≤ p18 ≤ 0.018, 

.1
18

1
∑

=
=

b
bp  (35) 

 
Now, before we find optimal values bp&  of the 
transient probabilities pb, b = 1,2,…,18, that min-
imize the objective function (33), we arrange the 
mean values of the ferry technical system condi-
tional operation costs [C(θ)](b), b = 1,2,…,18, 
determined by (31), in non-decreasing order  
 
208.8c ≤ 208.8c ≤ 259.2c ≤ 259.2c ≤ 522c  
≤ 522c ≤ 870.48c ≤ 965.16c ≤ 1186.56c  
≤ 2073.6c ≤ 2211.12c ≤ 2246c ≤ 2302.56c 
≤ 2521.44c ≤ 2544.48c ≤ 2669.76c ≤ 26030.16c 
≤ 26920.08c, 
 
i.e. 
 

)4()1()14()6(

)3()9()15()12(

)8()18()17()7(

)16()11()10()2(

)]([)]([)]([)]([
)]([)]([)]([)]([
)]([)]([)]([)]([

)]([)]([)]([)]([

θθθθ

θθθθ

θθθθ

θθθθ

CCCC
CCCC
CCCC

CCCC

≤≤≤≤

≤≤≤≤

≤≤≤≤

≤≤≤

 

.)]([)]([ )5()13( θθ CC ≤≤  (36) 
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Further, we substitute  
 

,,,,,
,,,,,

,,,,,

1151414613312911

151012988187176

7516411310221

pxpxpxpxpx
pxpxpxpxpx

pxpxpxpxpx

=====

=====

=====

 

,,, 5181317416 pxpxpx ===  (37) 
 
and 
 

== 21 px (( 0.001, == 102 px (( 0.001,  
== 113 px (( 0.002, == 164 px (( 0.002,  
== 75 px (( 0.002, == 176 px (( 0.002,  

187 px (( = = 0.001, 88 px (( = = 0.001,  

129 px (( = = 0.013, 1510 px (( = = 0.018,  

911 px (( = = 0.001, 312 px (( = = 0.018, 

613 px (( = = 0.018, 1414 px (( = = 0.025,  

115 px (( = = 0.0006, 416 px (( = = 0.027, 

1317 px (( = = 0.286, 518 px (( = = 0.286, 
 

21 px )) = = 0.002, 102 px )) = = 0.003,  

113 px )) = = 0.004, 164 px )) = = 0.004,  

75 px )) = = 0.018, 176 px )) = = 0.007,  

187 px )) = = 0.018, 88 px )) = = 0.018,  

129 px )) = = 0.024, 1510 px )) = = 0.024,  

911 px )) = = 0.056, 312 px )) = = 0.027,  

613 px )) = = 0.024, 1414 px )) = = 0.043,  

115 px )) = = 0.056, 416 px )) = = 0.056,  

1317 px )) =  = 0.78, 518 px )) = = 0.78, (38) 
 
and we minimize with respect to ,ix   
i = 1,2,…,18, the linear form (33) takes the form 
 
C(θ) = x1⋅208.8c + x2⋅208.8c + x3⋅259.2c  

+ x4⋅259.2c + x5⋅522c + x6⋅522c  
+ x7⋅870.48c  + x8⋅956.16c + x9⋅1186.56c 
+ x10⋅2073.6c + x11⋅2211.12c + x12⋅2246.4c  
+ x13⋅2302.56c + x14⋅2521.44c  
+ x15⋅2544.48c + x16⋅2669.76c +  
x17⋅26030.16c + x18⋅26920.08c, (39) 

 
with the following bound constraints  
 

0.001 ≤ x1 ≤ 0.002, 0.001≤ x2 ≤ 0.003,  
0.002 ≤ x3 ≤ 0.004, 0.002 ≤ x4 ≤ 0.004,  
0.002 ≤ x5 ≤ 0.018, 0.002 ≤ x6 ≤ 0.007,  
0.001 ≤ x7 ≤ 0.018, 0.001 ≤ x8 ≤ 0.018,  
0.013 ≤ x9 ≤ 0.024, 0.018 ≤ x10 ≤ 0.024,  
0.001 ≤ x11 ≤ 0.056, 0.018 ≤ x12 ≤ 0.027,  
0.018 ≤ x13 ≤ 0.024, 0.025 ≤ x14 ≤ 0.043,  
0.0006 ≤ x15 ≤ 0.056, 0.027 ≤ x16 ≤ 0.056,  
0.286 ≤ x17 ≤ 0.78, 0.286 ≤ x18 ≤ 0.78,  

.1
18

1
∑

=
=

i
ix  (40) 

 
We calculate 
 

∑
=

==
18

1
,7046.0

i
ixx ((   

 
2954.07046.011ˆ =−=−= xy (  (41) 

 
and we find  
 

,0,0,0 0000 =−== xxxx ())(  
0.001,0.002,,001.0 1111 =−== xxxx ())(  

.003,0005,.0,002.0 2222 =−== xxxx ())(  
0.005,0.009,04,0.0 3333 =−== xxxx ())(  

007,.00.013,0.006, 4444 =−== xxxx ())(  
.023,00.031,0.008, 5555 =−== xxxx ())(  

0.028,.038,001,.0 6666 =−== xxxx ())(  
,045.00.056,,011.0 7777 =−== xxxx ())(  

0.062,0.074,,012.0 8888 =−== xxxx ())(  
0.073,0.098,025,.0 9999 =−== xxxx ())(  

0.079,0.122,0.043, 10101010 =−== xxxx ())(  
0.134,0.178,,044.0 11111111 =−== xxxx ())(  
0.143,.205,0062,.0 12121212 =−== xxxx ())(  

0.149,.229,0,08.0 13131313 =−== xxxx ())(  
0.167,0.272,,105.0 14141414 =−== xxxx ())(  

0.2224,0.328,,1056.0 15151515 =−== xxxx ())(  
0.2514,0.384,,1326.0 16161616 =−== xxxx ())(  
0.7454,1.164,,4186.0 17171717 =−== xxxx ())(  
1.2394,1.944,6,704.0 18181818 =−== xxxx ())(

 (42) 
 
From the above, the expression takes the form  
 

,2954.0<− II xx ()  (43) 
 
then it follows that the largest value  
I ∈{0,1,…,18} such that this inequality holds is 
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I = 16. Therefore, we fix the optimal solution 
that minimize linear function (33). Namely, we 
get  
 

,002.011 == xx )
& ,003.022 == xx )

&

,004.033 == xx )
& ,004.044 == xx )

&

,018.055 == xx )
&  ,007.066 == xx )

&   
,018.077 == xx )

& ,018.088 == xx )
&

,024.099 == xx )
& ,024.01010 == xx )

&

,056.01111 == xx )
& ,027.01212 == xx )

&

,024.01313 == xx )
& ,043.01414 == xx )

&

,056.01515 == xx )
& ,056.01616 == xx )

&  

,33.0286.0

1326.0384.02954.017
1616

17 ˆ
=+

+−=++−= xxxyx (()
&

.286.01818 == xx (
&  (44) 

 
Finally, after making the substitution inverse to 
(37), we get the optimal transient probabilities 
 

,056.0151 == xp && ,002.012 == xp &&

,027.0123 == xp && ,056.0164 == xp &&

,286.0185 == xp && ,024.0136 == xp &&

,018.057 == xp && ,018.088 == xp &&

,056.0119 == xp && ,003.0210 == xp &&

,004.0311 == xp && ,024.0912 == xp &&

,33.01713 == xp && ,043.01414 == xp &&

,024.01015 == xp && ,004.0416 == xp &&

,007.0617 == xp && ,018.0718 == xp &&  (45) 
 
that minimize the mean value of the ferry tech-
nical system total operation cost C(θ) during the 
operation time θ = 1 month = 720 hours, ex-
pressed by the linear form (32) and (45), its op-
timal value is  
 

)(θC& ≅ 0.056⋅2554.48c + 0.002⋅208.8c 
+ 0.027⋅2246.4c + 0.056⋅2669.76c  
+ 0.286⋅26920.08c + 0.024⋅2302.56c  
+ 0.018⋅522c + 0.018⋅965.16c + 0.056⋅2211.12c  
+ 0.003⋅208.8c + 0.004⋅259.2c + 0.024⋅1186.56c 
+ 0.33⋅26030.16c + 0.043⋅2521.44c  
+ 0.024⋅2073.6c + 0.004⋅259.2c + 0.007⋅522c  
+ 0.018⋅870.48c ≅ 17056.54c. (46) 

5. Maritime ferry technical system safety  
 

5.1. Safety characteristics  
 

We assume, that the maritime ferry incorporates 
a number of main technical subsystems having 
an crucial impact on its safety, further termed the 
ferry technical system: 
• 1S  – a navigational subsystem,  
• 2S  – a propulsion and controlling subsystem, 
• 3S  – a loading and unloading subsystem,  
• 4S  – a stability control subsystem, 
• 5S  – an anchoring and mooring subsystem. 
The subsystems ,1S ,2S ,3S ,4S ,5S are forming a 
general series safety structure of the ferry tech-
nical system shown in Figure 1. 
 

S1 S2 S5 .    .    . 

  
Figure 1. The general structure of the ferry tech-
nical system safety. 
 
After analyzing the matter with help of experts 
and taking into consideration the safety  
of the operation of the ferry, we identify the five 
safety states of the ferry technical system and its 
components:  
• a safety state 4 – the ferry operation is fully 

safe,  
• a safety state 3 – the ferry operation is less 

safe and more dangerous because of the pos-
sibility of environment pollution, 

• a safety state 2 called a critical safety state – 
the ferry operation is less safe and more dan-
gerous because of the possibility of environ-
ment pollution and causing small accidents,  

• a safety state 1 – the ferry operation is much 
less safe and much more dangerous because 
of the possibility of serious environment pol-
lution and causing extensive accidents,  

• a safety state 0 – the ferry technical system is 
destroyed (Kołowrocki & Soszyńska-Budny, 
2011/2015). 

Furthermore, we presume that only possible tran-
sitions between the components’ safety states are 
those from better to worse and that that critical 
safety state for the system and its components is  
r = 2. 
Applying (12)–(13) and using (28) the safety 
function of maritime ferry technical system is 
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given by 
 
S(t,·) = [S(t,1), S(t,2), S(t,3), S(t,4)],  ≥ 0, (47) 
 
and 
 
S(t,u) = 0.038·[S(t,u)](1) + 0.002·[S(t, u)](2)  

+ 0.026·[S(t, u)](3) + 0.036·[S(t, u)](4)  

+ 0.363·[S(t, u)](5) + 0.026·[S(t, u)](6)  

+ 0.005·[S(t, u)](7) + 0.016·[S(t, u)](8)  

+ 0.037·[S(t, u)](9) + 0.002·[S(t, u)](10)  

+ 0.003·[S(t, u)](11) + 0.0016·[S(t, u)](12)  

+ 0.351·[S(t, u)](13) + 0.034·[S(t, u)](14)  

+ 0.024·[S(t, u)](15) + 0.003·[S(t, u)](16)  

+ 0.005·[S(t, u)](17) + 0.013·[S(t, u)](18),   ≥ 0, for u = 1,2,…,4.  (48) 
 
where [S(t,u)](b), b = 1,2,…,18, are the system 
conditional safety functions at the operation state 
zb, b = 1,2,…,18, determined in (Kołowrocki & 
Magryta-Mut, 2020c, 2021; Magryta-Mut, 2020, 
2021). 
Hence, in particular for u = 2, we have  
 
S(t,2) = 0.038·[S(t,2)](1) + 0.002·[S(t,2)](2)  

+ 0.026·[S(t,2)](3) + 0.036·[S(t,2)](4)  

+ 0.363·[S(t,2)](5) + 0.026·[S(t,2)](6)  

+ 0.005·[S(t,2)](7) + 0.016·[S(t,2)](8)  

+ 0.037·[S(t,2)](9) + 0.002·[S(t,2)](10)  

+ 0.003·[S(t,2)](11) + 0.0016·[S(t,2)](12)  

+ 0.351·[S(t,2)](13) + 0.034·[S(t,2)](14)  

+ 0.024·[S(t,2)](15) + 0.003·[S(t,2)](16)  

+ 0.005·[S(t,2)](17) + 0.013·[S(t,2)](18) ,   ≥ 0, (49) 

 
where [S(t,2)](b),  ≥ 0,  b = 1,2,…,18, are the 
system conditional safety functions at the opera-
tion state zb, b = 1,2,…,18, determined in 
(Kołowrocki & Magryta-Mut, 2020c, 2021; 
Magryta-Mut, 2020, 2021). 
Further, the expected values of the analyzed sys-
tem conditional lifetimes in the safety state sub-
set not worse than the critical safety state {2,3,4} 
at the operation states b, b = 1,2,…,18, respec-
tively are (Kołowrocki & Magryta-Mut, 2020c, 
2021; Kołowrocki & Soszyńska-Budny, 2018a; 
Magryta-Mut, 2020): 
 
[µ(2)](1) ≅ 1.47, [µ(2)](2) ≅ 1.33, [µ(2)](3) ≅ 1.40, 

[µ(2)](4) ≅ 1.39, [µ(2)](5) ≅ 1.39, [µ(2)](6) ≅ 1.38, 
[µ(2)](7) ≅ 1.28, [µ(2)](8) ≅ 1.44, [µ(2)](9) ≅ 1.44, 
[µ(2)](10) ≅ 1.33, [µ(2)](11) ≅ 1.34, [µ(2)](12) ≅ 1.40, 
[µ(2)](13) ≅ 1.39, [µ(2)](14) ≅ 1.39, [µ(2)](15) ≅ 1.40, 
[µ(2)](16) ≅ 1.34, [µ(2)](17) ≅ 1.28,  
[µ(2)](18) ≅ 1.46 years. (50) 
 
The standard deviation of the considered system 
conditional lifetimes in the safety state subset 
{2,3,4} at the operation state zb, b = 1,2,…,18, 
respectively are (Kołowrocki & Magryta, 2020a; 
Kołowrocki & Magryta-Mut, 2020c; Kołowrocki 
& Soszyńska-Budny, 2018a; Magryta-Mut, 
2020): 
 
[σ(2)](1) ≅ 1.45, [σ(2)](2) ≅ 1.31, [σ(2)](3) ≅ 1.38, 
[σ(2)](4) ≅ 1.38, [σ(2)](5) ≅ 1.37, [σ(2)](6) ≅ 1.37, 
[σ(2)](7) ≅ 1.26, [σ(2)](8) ≅ 1.42, [σ(2)](9) ≅ 1.42, 
[σ(2)](10) ≅ 1.31, [σ(2)](11) ≅ 1.31, [σ(2)](12) ≅ 1.38, 
[σ(2)](13) ≅ 1.39, [σ(2)](14) ≅ 1.38, [σ(2)](15) ≅ 1.37, 
[σ(2)](16) ≅ 1.31, [σ(2)](17) ≅ 1.26, 
[σ(2)](18) ≅ 1.45 years. (51) 
 
Thus, applying (14) and considering (28) and 
(49), the value of the ferry technical system un-
conditional lifetime in the safety state subset not 
worse than this critical safety state {2,3,4} is  
 
µ(2) = p1· 1.47 + p2·1.33 + p3·1.40 + p4·1.39  

+ p5·1.39 + p6·1.38 + p7·1.28 + p8·1.44  
+ p9·1.44 + p10·1.33 + p11·1.34 + p12·1.40  
+ p13·1.39 + p14·1.39 + p15·1.40 + p16·1.34  
+ p17·1.28 + p18·1.46 ≅ 1.395. (52) 

 
Further, considering (51)–(52), the correspond-
ing standard deviation of the analyzed system 
unconditional lifetime in the state subset {2,3,4} 
is (Magryta-Mut, 2021)  
 
σ(2) ≅ 1.383 years. (53) 
 
As the ferry technical system’s critical safety 
state is r = 2, then its system risk function is giv-
en by (Kołowrocki & Magryta, 2020a; Kołow-
rocki & Magryta-Mut, 2020c, 2021; Magryta-
Mut, 2021): 
 

),2,(1)( tt Sr −≅  ≥ 0, (54) 
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where S(t,2),  ≥ 0, is given by (49). 
Hence, and considering (52), the moment when 
the system risk function exceeds a permitted lev-
el, for instance δ = 0.05, is 

≅= )(1 δ-rτ 0.0727 year. (55) 
 
By (19), considering (51), the analyzed system’s 
mean value of the intensity of ageing is 
 

.717.0
395.1
1

)2(
1)2( ≅==

µ
λ  (56) 

 
By (20), considering (56) and the values of the 
ferry technical system without operation impact 
intensity of ageing λ0(2) = 0.678, determined in 
(Kołowrocki & Magryta-Mut, 2020c; Kołow-
rocki & Soszyńska-Budny, 2018b; Magryta-Mut, 
2021), the coefficient of the operation process 
impact on the ferry technical system intensity of 
ageing is 
 

.058.1
678.0
717.0

)2(
)2()2( 0 ≅==

λ
λ

ρ  (57) 

 
Hence, applying (21), the ferry technical system 
resilience indicator, i.e. the coefficient of the 
ferry technical system resilience to operation 
process impact, is 
 

%.5.94945.0
058.1
1

)2(
1)2( =≅==

ρ
RI  (58) 

 
5.2. Optimal safety characteristics 
 

Applying the optimization procedure from Sec-
tion 3.2, we obtain the optimal mean value of the 
ferry technical system lifetime is (Magryta-Mut, 
2020)  
 

34.140.139.139.1
40.134.133.144.1

44.128.138.139.1
39.140.133.147.1)2(

16151413

1211109

8765

4321

⋅+⋅+⋅+⋅+
⋅+⋅+⋅+⋅+

⋅+⋅+⋅+⋅+
⋅+⋅+⋅+⋅=

pppp
pppp

pppp
pppp

&&&&

&&&&

&&&&

&&&&&µ

 

+ ̇  ⋅ 1.28 +  ̇  ⋅ 1.46 ≅ 1.399 years, (59) 
 
where 
  ̇ = 0.056,  ̇ = 0.001,  ̇ = 0.027,    ̇ = 0.056,  ̇ = 0.382,  ̇ = 0.018,    ̇ = 0.002,  ̇ = 0.018,  ̇ = 0.056,   

 ̇  = 0.001,  ̇  = 0.002,  ̇  =  0.024,    ̇  = 0.286,  ̇  = 0.025,  ̇  = 0.024,    ̇  = 0.002,  ̇  = 0.002,  ̇  = 0.018.   
 
Moreover, the corresponding optimal uncondi-
tional safety function of the ferry technical sys-
tem takes the form  
 

)2,(tS& = 0.056·[S(t,2)](1) + 0.001·[S(t,2)](2)  

+ 0.027·[S(t,2)](3) + 0.056·[S(t,2)](4)  

+ 0.382·[S(t,2)](5) + 0.018·[S(t,2)](6)  

+ 0.002·[S(t,2)](7) + 0.018·[S(t,2)](8)  

+ 0.056·[S(t,2)](9) + 0.001·[S(t,2)](10)  
+ 0.002·[S(t,2)](11) + 0.024·[S(t,2)](12)  
+ 0.286·[S(t,2)](13) + 0.025·[S(t,2)](14)  

+ 0.024·[S(t,2)](15) + 0.002·[S(t,2)](16)  

+ 0.002·[S(t,2)](17) + 0.018·[S(t,2)](18) ,   ≥ 0, (60) 
 
where [S(t,2)](b),  ≥ 0, b = 1,2,…,18, are deter-
mined in (Kołowrocki & Magryta-Mut, 2020c; 
Magryta-Mut, 2020, 2021). 
Moreover, considering (59) and (60), the corre-
sponding optimal standard deviations of the ferry 
technical system unconditional lifetime in the 
state subset not worse than the critical safety 
state is (Kołowrocki & Magryta-Mut, 2020c; 
Magryta-Mut, 2020, 2021) 
 

≅)2(σ&  1.386 years. (61) 
 
As the ferry technical system critical safety state 
is r = 2, then considering (17) and (60), its opti-
mal system risk function, is given by  
 

),2,(1)( tt Sr && −≅   ≥ 0. (62) 
 
Considering (18) and (60) the moment when the 
optimal system risk function exceeds a permitted 
level, for instance δ = 0.05, is 
  

≅= )(1 δ-r&&τ 0.0729 year. (63) 
 
By (19) and (59) the ferry technical system mean 
value of the optimal intensity of ageing is 
 

.715.0
399.1
1

)2(
1)2( ≅==

µ&
&λ  (64) 
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Considering (20) and (64) and the values of the 
analyzed system without operation impact inten-
sity of ageing λ0(t) = 0.678, determined in 
(Kołowrocki & Magryta, 2020a; Kołowrocki & 
Magryta-Mut, 2020c; Magryta-Mut, 2021), the 
optimal coefficient of the operation process im-
pact on the ferry technical system intensity of 
ageing is  
 

.055.1
678.0
715.0

)2(
)2()2( 0 ≅==

λ
λ

ρ&  (65) 

 
Hence, applying (21), the ferry technical system 
optimal resilience indicator, i.e. the optimal coef-
ficient of the ferry technical system resilience to 
operation process impact is 
 

%.8.94948.0
055.1
1

)2(
1)2( =≅==

ρ&
& IR  (66) 

 
6. Joint system operation cost and safety  

optimization  
  

6.1. System safety corresponding to its  
minimal operation cost  

 

To analyze jointly the system operation cost and 
safety it is possible to propose the procedure of 
determining the optimal values of limit transient 
probabilities of the system operation process at 
the particular operation states that allows to find 
the minimal operation total cost during the fixed 
operation time, through applying the proposed 
system operation cost model. Next, to find the 
system conditional safety indicators, correspond-
ing to this system minimal total operation cost 
during the fixed operation time, we replace the 
limit transient probabilities in particular opera-
tion states, existing in the formula for the system 
safety function, by their optimal values existing 
in the formula for the system minimal operation 
total cost during the fixed operation time. 
Thus, in Section 4, there is presented the proce-
dure of determining the optimal values ,bp&  
b = 1, 2,…, ν, the limit transient probabilities of 
the system operation process Z(t) at the particular 
operation states zb, b = 1, 2,…, ν, that allows to 
find the minimal operation total cost during the 
fixed operation time θ, through applying the sys-
tem operation cost model and determining its 
value. To find the system conditional safety indi-
cators, corresponding to this system minimal 

total operation cost during the fixed operation 
time θ, we replace ,bp  b = 1, 2,…,ν, existing in 
the formula (13) for the system safety function, 
by ,bp&  b = 1, 2,…, ν, existing in the formula 
(11) for its minimal operation cost during this 
fixed operation time. 
  
6.2. Maritime ferry technical system safety 

corresponding to its minimal operation 
cost 

 

In Section 4, we get the optimal limit transient 
probabilities of the ferry operation process Z(t) at 
the particular operation states zb, b = 1, 2,…, 18, 
determined by (45): 
  

,056.01 =p& ,002.02 =p& ,027.03 =p&  
,056.04 =p& ,286.05 =p& ,024.06 =p&  
,018.07 =p& ,018.08 =p& ,056.09 =p&  
,003.010 =p& ,004.011 =p& ,024.012 =p&  
,33.013 =p& ,043.014 =p& ,024.015 =p&  
,004.016 =p& ,007.017 =p& ,018.018 =p&  (67) 

 
that minimize the ferry technical system opera-
tion total cost during the fixed operation time of 
one month and determining its minimal value 
given by (46). 
To find the ferry technical system conditional 
safety indicators, corresponding to this system 
optimal operation total cost, we replace pb, 
b = 1, 2,…, 18, existing in the formula (48) for 
the coordinate S(t,2),  ≥ 0, and in the formulae 
of the remaining coordinates (Magryta-Mut, 
2021) of the system safety function, by ,bp&   
b = 1, 2,…, 18, defined by (67). This way, we get 
the conditional ferry technical system safety 
function, corresponding to this system optimal 
total operation cost during the fixed operation 
time, given by the vector 
 
S(t,·) = [S(t,1), S(t,2), S(t,3), S(t,4)],  ≥ 0, (68) 
 
where according to (12)–(13) and considering the 
ferry technical system operation process optimal 
limit transient probabilities at the operation states 
determined by (67), the vector coordinates are 
given respectively by 
 
S(t,1) = 0.056·[S(t,1)](1) + 0.002·[S(t,1)](2)  
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+ 0.027·[S(t,1)](3) + 0.056·[S(t,1)](4)  
+ 0.286·[S(t,1)](5) + 0.024·[S(t,1)](6)  
+ 0.018·[S(t,1)](7) + 0.018·[S(t,1)](8)  
+ 0.056·[S(t,1)](9) + 0.003·[S(t,1)](10)  
+ 0.004·[S(t,1)](11) + 0.024·[S(t,1)](12)  
+ 0.33·[S(t,1)](13) + 0.043·[S(t,1)](14)  
+ 0.024·[S(t,1)](15) + 0.004·[S(t,1)](16)  
+ 0.007·[S(t,1)](17) + 0.018·[S(t,1)](18), (69) 

 
S(t,2) = 0.056·[S(t,2)](1) + 0.002·[S(t,2)](2)  

+ 0.027·[S(t,2)](3) + 0.056·[S(t,2)](4)  
+ 0.286·[S(t,2)](5) + 0.024·[S(t,2)](6)  
+ 0.018·[S(t,2)](7) + 0.018·[S(t,2)](8)  
+ 0.056·[S(t,2)](9) + 0.003·[S(t,2)](10) 

 + 0.004·[S(t,2)](11) + 0.024·[S(t,2)](12)  
+ 0.33·[S(t,2)](13) + 0.043·[S(t,2)](14)  
+ 0.024·[S(t,2)](15) + 0.004·[S(t,2)](16)  
+ 0.007·[S(t,2)](17) + 0.018·[S(t,2)](18), (70) 

 
S(t,3) = 0.056·[S(t,3)](1) + 0.002·[S(t,3)](2)  

+ 0.027·[S(t,3)](3) + 0.056·[S(t,3)](4)  
+ 0.286·[S(t,3)](5) + 0.024·[S(t,3)](6)  
+ 0.018·[S(t,3)](7) + 0.018·[S(t,3)](8)  
+ 0.056·[S(t,3)](9) + 0.003·[S(t,3)](10)  
+ 0.004·[S(t,3)](11) + 0.024·[S(t,3)](12)  
+ 0.33·[S(t,3)](13) + 0.043·[S(t,3)](14)  
+ 0.024·[S(t,3)](15) + 0.004·[S(t,3)](16)  
+ 0.007·[S(t,3)](17) + 0.018·[S(t,3)](18), (71) 

 
S(t,4) = 0.056·[S(t,4)](1) + 0.002·[S(t,4)](2)  

+ 0.027·[S(t,4)](3) + 0.056·[S(t,4)](4)  
+ 0.286·[S(t,4)](5) + 0.024·[S(t,4)](6)  
+ 0.018·[S(t,4)](7) + 0.018·[S(t,4)](8)  
+ 0.056·[S(t,4)](9) + 0.003·[S(t,4)](10)  
+ 0.004·[S(t,4)](11) + 0.024·[S(t,4)](12)  
+ 0.33·[S(t,4)](13) + 0.043·[S(t,4)](14)  
+ 0.024·[S(t,4)](15) + 0.004·[S(t,4)](16)  
+ 0.007·[S(t,4)](17) + 0.018·[S(t,4)](18), (72) 

 
where ,)],([ )(butS   ≥ 0,  u = 1, 2, 3, 4, 
b = 1, 2,…, 18, are given respectively by in 
(Magryta-Mut, 2021).  
The conditional expected values and standard 
deviations of the ferry technical system lifetimes 
in the safety state subsets {1, 2, 3, 4}, {2, 3, 4}, 
{3, 4}, {4} calculated from the results given by 
(69)–(72), considering (Magryta-Mut, 2021), 

corresponding to this system minimal total op-
eration cost during the fixed operation time, re-
spectively are: 
 
μ(1) ≅  0.056·1.70476 + 0.002·1.60772  

+ 0.027·1.68087 + 0.056·1.6956  
+ 0.286·1.69547 + 0.024·1.67434  
+ 0.018·1.54736 + 0.018·1.72871  
+ 0.056·1.72871 + 0.003·1.60772  
+ 0.004·1.6102 + 0.024·1.70148  
+ 0.33·1.69547 + 0.043·1.6863  
+ 0.024·1.68087 + 0.004·1.61025  
+ 0.007·1.54736+ 0.018·1.70476  
≅  1.692 years, (73) 

  (1) ≅ 1.666 years, (74) 
 
μ(2) ≅  0.056·1.41708 + 0.002·1.32879  

+ 0.027·1.3912 + 0.056·1.39303  
+ 0.286·1.39292 + 0.024·1.37699  
+ 0.018·1.27865 + 0.018·1.43719  
+ 0.056·1.43719 + 0.003·1.32879  
+ 0.004·1.3336 + 0.024·1.39692  
+ 0.33·1.39292 + 0.043·1.3854  
+ 0.024·1.3912 + 0.004·1.3336  
+ 0.007·1.27865 + 0.018·1.41708  
≅  1.394 years, (75) 

  (2) ≅ 1.376 years, (76) 
 
μ(3) ≅  0.056·1.22861 + 0.002·1.18936  

+ 0.027·1.24553 + 0.056·1.24632  
+ 0.286·1.24619 + 0.024·1.23228  
+ 0.018·1.15851 + 0.018·1.26722  
+ 0.056·1.26722 + 0.003·1.18936  
+ 0.004·1.19593 + 0.024·1.24985  
+ 0.33·1.24619 + 0.043·1.23945  
+ 0.024·1.24553 + 0.004·1.19593  
+ 0.007·1.15851 + 0.018·1.22861  
≅  1.243 years, (77) 

  (3) ≅ 1.229 years, (78) 
 
μ(4) ≅  0.056·1.11601 + 0.002·1.06574  

+ 0.027·1.11512 + 0.056·1.11522  
+ 0.286·1.1151 + 0.024·1.10301  
+ 0.018·1.02847 + 0.018·1.13163  
+ 0.056·1.13163 + 0.003·1.06574  
+ 0.004·1.07262 + 0.024·1.11836  
+ 0.33·1.1151 + 0.043·1.1091  
+ 0.024·1.11512 + 0.004·1.07262  
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+ 0.007·1.02847 + 0.018·1.11601  
≅ 1.1132 years, (79) 
  (4) ≅ 1.101 years. (80) 

 
And further, according to (16), considering (73), 
(75), (77) and (79), the conditional mean values 
of the system lifetimes in the particular safety 
states 1, 2, 3, 4, corresponding to this system 
minimal total operation cost during the fixed 
operation time, respectively are: 
  ̄(1) =  (1) −  (2) = 0.299,  
  ̄(2) =  (2) −  (3) = 0.151 year,  (81) 
  ̄(3) =  (3) −  (4) = 0.130,  
  ̄(4) =  (4) = 1.113 years. (82) 
 
Since the critical safety state is r = 2 then the 
conditional system risk function, corresponding 
to this system optimal operation total cost during 
the fixed operation time, according to (17) is 
given by  
 
r(t) = ),2,(1 tS−   ≥ 0, (83) 
 
where )2,(tS  is given by (70). 
Hence, according to (18). the moment when the 
system conditional risk function exceeds a per-
mitted level, for instance δ = 0.05, corresponding 
to this system optimal operation total cost during 
the fixed operation time, is  
 
τ = r−1(δ) ≅ 0.0463 year. (84) 
 
The conditional ferry technical system condi-
tional intensities of ageing, corresponding to this 
system optimal operation total cost during the 
fixed operation time in the system safety subsets, 
are: 
 
λ(1) ≅ 0.591, λ(2) ≅ 0.718,  
 
λ(3) ≅ 0.805, λ(4) ≅ 0.898. (85) 
 
The conditional coefficients of the operation pro-
cess impact on the ferry technical system intensi-
ties of ageing, corresponding to this system op-
timal operation total cost, are: 

ρ(1) ≅ 1.046, ρ(2) ≅ 1.059,  
 
ρ(3) ≅ 1.046, ρ(4) ≅ 1.046. (86) 
 
Finally, by (86), the ferry technical system con-
ditional resilience indicator, i.e. the conditional 
coefficient of the ferry technical system resili-
ence to the operation process impact, corre-
sponding to this system optimal operation total 
cost during the fixed operation time, is 
 
RI(2) = 1/ ρ(2) ≅ 0.944 = 94,4%. (87) 
 
6.3. Discussion of results 
 

The obtained in Section 4.3 minimal total opera-
tion cost of the ferry technical system given by 
(46) is significantly less than its operation total 
cost before optimization given by (32) in Section 
4.2. Whereas, the conditional safety indicators of 
the ferry technical system corresponding to its 
minimal operation total cost, determined in Sec-
tion 6.2, are slightly worse than those before the 
safety optimization given in Section 5.1 and 
those determined after the safety direct uncondi-
tional optimization determined in Section 5.2. 
Thus, if reducing (minimizing) the ferry tech-
nical system’s operation total cost has higher 
priority than maximizing its safety, we can modi-
fy this system operation process through replac-
ing approximately the limit transient probabili-
ties pb, b =1,2,…,18, at the ferry particular opera-
tion states before the operation total cost minimi-
zation given by (28) by the values convergent to 
their optimal values  ̇ , b = 1, 2,…, 18, after the 
operation total cost minimization determined by 
(67).  
In practice, it is easier to modify the considered 
system operation process through replacing ap-
proximately the system operation total time mean 
values in the particular operation states during 
the fixed operation time of θ = 1 month = 30 
days = 720 hours, defined by the approximate 
formula (Kołowrocki & Magryta-Mut, 2020c) 
 

,18,...,2,1,ˆ =⋅= bpM bb θ  (88) 
 
and after considering (28) given in hours by (29), 
by the system total operation time mean values in 
the particular operation states during the fixed 
operation time of θ = 1 month = 30 days = 720 
hours, after the system operation total cost opti-
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mization, determined according to the approxi-
mate formula (Kołowrocki & Magryta-Mut, 
2020c) 
 

,18,...,2,1,ˆ =⋅= bpM bb θ&
&  (89) 

 
and, considering (67), given in hours by:  
 

1M̂&  = 40.32, 2M̂&  = 1.44, 3M̂&  = 19.44, 

4M̂&  = 40.32, 5M̂&  = 205.92, 6M̂&  = 17.28, 

7M̂&  = 12.96, 8M̂&  = 12.96, 9M̂&  = 40.32, 

10M̂&  = 2.16, 11M̂&  = 2.88, 12M̂&  = 17.28 , 

13M̂& = 237.60, 14M̂&  = 30.96, 15M̂&  = 17.28, 

16M̂&  = 2.88, 17M̂&  = 5.04, 18M̂&  = 12.96.  (90) 
  
Equivalently, we can to modify the considered 
system operation process through replacing ap-
proximately the system total operation time mean 
values in the particular operation states during 
the fixed operation time of θ = 1 year = 365 days, 
determined by the approximate formula (88) and, 
after considering (28), given in days by:  
 

1M̂  =13.87, 2M̂  = 0.73, 3M̂  = 9.49, 

4M̂  = 13.14, 5M̂  = 132,495, 6M̂ = 9.49, 

7M̂  = 1.825, 8M̂  = 5.84, 9M̂  = 13.505, 

10M̂  = 0.73, 11M̂  = 1.095, 12M̂  = 5.84, 

13M̂ = 128.115, 14M̂  = 12.41, 15M̂  = 8.76, 

16M̂  = 1.095, 17M̂  = 1.825, 18M̂  = 4.745, (91) 
 
by the system total operation time mean values in 
the particular operation states during the fixed 
operation time of θ = 1 year = 365 days, after the 
system operation total cost minimization, deter-
mined according to the approximate formula (89) 
and after considering (67) given in days by:  
 

1M̂&  = 20.44, 2M̂&  = 0.73, 3M̂&  = 9.855, 

4M̂&  = 20.44, 5M̂&  = 104.39, 6M̂&  = 8.76, 

7M̂&  = 6.57, 8M̂&  = 6.57, 9M̂&  = 20.44, 

10M̂&  = 1.095, 11M̂&  = 1.46, 12M̂&  = 8.76, 

13M̂& = 120.45, 14M̂&  = 15.695, 15M̂&  = 8.76, 

16M̂&  = 1.46, 17M̂&  = 2.555, 18M̂&  = 6.57.  (92) 
 
The procedure of the ferry technical system op-
eration process can be performed for other than 
the above fixed operation times of 1 month and 1 
year, dependently to the system operator comfort 
in the achievement of the best results of the sys-
tem operation total times in the particular opera-
tion states convergence to their optimal values 
resulting from the performed system operation 
total cost minimization. 
 
7. Conclusion  
 

The procedure of using the operation total cost 
model and the general safety analytical model of 
complex multistate technical system related to its 
operation process (Kołowrocki, 2014) and the 
linear programming (Klabjan & Adelman, 2006) 
is presented and proposed to joint analysis of the 
system operation total cost minimization and the 
system safety corresponding to this cost evalua-
tion. The mean value of the complex multistate 
system total operation cost is minimize through 
the system operation process modification. This 
operation process modification allows to find the 
complex system conditional safety indicators 
corresponding to the system minimal operation 
total cost during the fixed operation time. The 
proposed cost optimization procedure and find-
ing corresponding system safety indicators gives 
practically important possibility of the system 
total operation cost minimizing and keeping the 
fixed corresponding conditional safety indicators 
during the operation through the system new 
operation strategy. The proposed system opera-
tion cost and system safety optimization separat-
ed and joint models and procedures are applied 
to the ferry technical system operation cost and 
safety examination. These procedures can be 
used in operation cost and safety optimization of 
members of various real complex systems and 
critical infrastructures (Gouldby et al., 2010; 
Habibullah et al., 2009; Kołowrocki et al., 2016; 
Kołowrocki & Magryta, 2020b; Kołowrocki & 
Magryta-Mut, 2020c; Lauge et al., 2015; 
Magryta-Mut, 2020). Further research can be 
related to considering other impacts on the sys-
tem operation cost and safety, for instance relat-
ed to climate-weather factors (Kołowrocki, 2021; 



  
Operation cost and safety optimization of maritime transportation system 

 
223 

 

Kołowrocki & Kuligowska, 2018; Torbicki, 
2019a-b; Torbicki & Drabiński; 2020) and re-
solving the issues of critical infrastructure 
(Lauge et al., 2015) operation cost and safety 
optimization and discovering optimal values of 
operation cost and safety and resilience indica-
tors of system impacted jointly by the operation 
and climate-weather conditions (Kołowrocki, 
2021). These developments can also benefit the 
mitigation of critical infrastructure accident con-
sequences (Blokus & Kołowrocki, 2019, 2020; 
Bogalecka, 2020; Dąbrowska & Kołowrocki, 
2019a-b; 2020a-c, Kołowrocki, 2021) and mini-
mizing the system operation cost and improving 
critical infrastructure resilience to operation and 
climate-weather conditions (Kołowrocki, 2021; 
Kołowrocki & Kuligowska, 2018; Torbicki, 
2019a-b; Torbicki & Drabiński; 2020). 
The proposed optimization procedures and per-
spective of future research applied to system 
operation cost and to safety and resilience opti-
mization of the complex systems and critical 
infrastructures can give practically important 
possibility of these systems effectiveness im-
provement through the proposing their new oper-
ation strategy. 
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