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The present paper investigates the propagation of time harmonic circumferential waves in a two-dimensional 
hollow poroelastic cylinder with an inner shaft (shaft-bearing assembly). The hollow poroelastic cylinder and 
inner shaft are assumed to be infinite in axial direction. The outer surface of the cylinder is stress free and at the 
interface, between the inner shaft and the outer cylinder, it is assumed to be free sliding and the interfacial shear 
stresses are zero, also the normal stress and radial displacements are continuous. The frequency equation of 
guided circumferential waves for a permeable and an impermeable surface is obtained. When the angular wave 
number vanish the frequency equation of guided circumferential waves for a permeable and an impermeable 
surface degenerates and the dilatational and shear waves are uncoupled. Shear waves are independent of the 
nature of surface. The frequency equation of a permeable and an impermeable surface for bore-piston assembly is 
obtained as a particular case of the model under consideration when the outer radius of the hollow poroelastic 
cylinder tends to infinity. Results of previous studies are obtained as a particular case of the present study. Non-
dimensional frequency as a function of wave number is presented graphically for two types of models and 
discussed. Numerical results show that, in general, the first modes are linear for permeable and impermeable 
surfaces and the frequency of a permeable surface is more than that of an impermeable surface. 
 
Key words:  Biot’s theory, poroelastic layered cylinder, circumferential waves, shaft-bearing assembly, bore-

piston assembly, permeable surface, impermeable surface, wave number, frequency. 

 
1. Introduction 
 

Most of components in engineering usually consist of cylindrical structures composed of at least an 
inner cylinder and an outer cylinder. Study of fatigue cracks in cylindrical components is important, because 
due to the application of a load, crack formation follows. These fatigue cracks generally form at the interface 
between the two layers and they spread in a radial direction. Detection of such radial cracks is important to 
avoid a severe mechanical failure. A guided wave propagates in the direction of the layer, behaving as a 
standing wave through the thickness of the layer. Guided waves are commonly used to examine simple 
structures such as beams and plates and layered cylinders. One such example is given by Nagy et al [1], who 
suggested that radial fatigue cracks in weep holes in airframes may be detected by using guided waves 
propagating along the circumferential direction of the hole. Christine Valle et al [2] investigated the guided 
circumferential waves in layered cylinders and showed that the waves are non dispersive at high frequency 
or high wave number. Tajuddin and Shah [3, 4] studied the circumferential waves and torsional vibrations of 
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hollow poroelastic cylinders in the presence of dissipation and found that the phase velocity is non-dispersive 
in the case of circumferential waves. Whittier and Jones [5] studied axially symmetric vibrations in a two-
layered cylinder. Guided circumferential waves in a circular annulus are studied by Liu and Qu [6]. Malla 
Reddy and Tajuddin [7] studied the plane-strain vibrations of thick-walled hollow poroelastic cylinders. 
Towfighi et al. [8] discussed the wave propagation in a circumferential direction in anisotropic cylindrical 
curved plates. Shah [9] presented the solutions for flexural wave propagation in coated poroelastic cylinders 
where the rule of mixtures is used to understand the dispersion phenomenon in a coated cylinder knowing the 
frequency equations for the cases of homogeneous poroelastic cylinders made of coating and core poroelastic 
materials separately. 
 

 
 

Fig.1. Cross-section of shaft-bearing assembly. 
 
 In this paper, guided circumferential waves are studied for the purpose of detecting the radial fatigue 
cracks in a shaft-bearing assembly that is, a layered poroelastic cylinder. The frequency equation obtained 
helps in understanding the radial fatigue cracks. For this purpose, it is necessary to understand the behavior 
of wave propagation in a layered poroelastic cylinder. Time harmonic guided wave propagation in a 
circumferential direction of a double layered poroelastic cylinder (consisting of a shaft-bearing assembly) is 
considered. The poroelastic materials of each shaft and bearing are assumed to be homogeneous and 
isotropic. The boundary condition at the interface [between the inner shaft and the bearing (outer hollow 
cylinder)] is assumed to be free-sliding; that is, the interfacial shear stresses are assumed to be zero, and the 
normal stress and radial displacements are continuous. The frequency equations are obtained for the model 
under consideration by using Biot’s [10] theory of wave propagation. The frequency equation of a permeable 
and an impermeable surface for the cylindrical-piston assembly is obtained as a particular case of the model 
under consideration when the outer radius of the hollow poroelastic cylinder tends to infinity. When the 
angular wave number vanishes, the dilatational and shear waves are uncoupled in both the models and the 
frequency equation of shear waves is independent of the nature of the surface, that is, it is same for 
permeable and impermeable surfaces.  Numerical results for the dispersion curves of the first three modes are 
presented and discussed.  
 
2. Governing equations 
 

The equations of motion of a homogeneous, isotropic poroelastic solid (Biot [10]) in the presence of 
dissipation b are  
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where 2 is the Laplacian,  θ, ,r zu u uu  and  θ, ,r zU U UU  are displacements of the solid and liquid 

respectively, e and  are the dilatations of solid and liquid; A, N, Q, R are poroelastic constants and jk(j, k = 
1, 2) are the mass coefficients following Biot [10]. The poroelastic constants A, N correspond to familiar 
Lame constants in a purely elastic solid. The coefficient N represents the shear modulus of the solid. The 
coefficient R is a measure of the pressure required on the liquid to force a certain amount of the liquid into 
the aggregate while the total volume remains constant. The coefficient Q represents the coupling between the 
volume change of the solid to that of the liquid.  
 For the present problem, we consider the displacement components of solid  θ, ,ru u 0u  and liquid 
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where 1, 2, 1, 2 are functions of r, θ  and time t.  

Substitution of Eq.(2.2) into Eq.(2.1) yields 
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where P=A+2N and .
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The stresses jk and the liquid pressure s of the poroelastic solid are  
 

 σ ( )δ ,            , , θ,jk jk jk2Ne Ae Q j k r z     , 

 (2.4) 
s Qe R    

 
where jk  is the well-known Kronecker delta function. 
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3. Solution of the problem 
 

We consider a two layered poroelastic cylinder of infinite extent in the axial direction whose cross 
section is shown in Fig.1, where the axis of the cylinder is along the z-axis and (r, θ , z) are the cylindrical 
polar co-ordinates. Each layer of the poroelastic cylinder is isotropic and homogeneous. The radius of the 
inner shaft is r1 and outer radius of the bearing (hollow cylinder) is r2. For waves propagating in the 
circumferential direction the assumption of plane-strain deformation prevails. In this case, the pertinent non-
zero displacement and stress components are θ θθ θ, , σ , σ , σr rr ru u  and these are the variables of r and θ  only. 
The physical parameters related to the inner shaft are denoted by * as a superscript. For example, poroelastic 
constants of the poroelastic outer cylinder (bearing) are A, N, Q, R and the poroelastic constants of the inner 
shaft are denoted by A*, N*, Q*, R*. We seek the solution of Eqs (2.3) in the form  
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where n is the angular wave number ω  is the circular frequency and i is the complex unity. Equation (3.1) 
represents the potentials functions for time harmonic guided waves propagating in the circumferential 
direction and it is a model proposed by Viktorov [11] and then subsequently used by other authors. By 
substituting Eqs (3.1) into Eqs (2.3), its solution (bounded solution for the inner shaft) yields 
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In Eqs (3.2), (3.3), (3.4), (3.5), C1, C2, C3, C4, C5, C6, D1, D2, D3 are arbitrary constants, Jn and Yn are 
Bessel functions of first and second kind each of order n and 
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In Eqs (3.6), V1 and V2 are the velocities of dilatational waves of first and second kind respectively, 
V3 is the shear wave velocity and 
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Employing Eqs (3.2), (3.3), (3.4), (3.5) into Eqs (3.1) and then using Eqs (2.2) we get the 

displacement components of the solid as  
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where a dash (/) over a quantity represents the differentiation with respect to r. 

The non-zero stresses and liquid pressure in terms of potential functions are 
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4. Boundary conditions – frequency equation 

 
The outer surface of the cylinder (bearing) is assumed to be stress free and at the interface, the inner 

shaft and the outer cylinder (bearing) is free-sliding. Thus the boundary conditions for free vibrations in the 
case of a permeable surface are 
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Similarly, the boundary conditions in the case of an impermeable surface are 
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Putting Eqs (2.4), (3.8) and (3.9) into Eqs (4.1) results in a system of nine homogeneous algebraic 

equations of nine constants C1, C2, C3, C4, C5, C6, D1, D2, and D3. For a non-trivial solution to exist, the 
determinant of the coefficients must vanish. By eliminating these constants, the frequency equation of guided 
circumferential waves of a layered poroelastic cylinder in the case of a permeable surface is  

 

 , ,jkM 0            j, k 1 2 3....9                  (4.3) 

 
where the elements Mjk(r) are given in the Appendix [see Eq.(A.1)].   

Arguing similarly, putting Eqs (2.4), (3.8) and (3.9) into Eqs (4.2) yields the frequency equation of 
guided circumferential waves of a layered poroelastic cylinder in the case of an impermeable surface to be  

 

  
, , , ,jkN 0            j k 1 2 3....9                                             (4.4) 

 
where the elements Njk(r) are given in the Appendix [see Eq.(A.2)]. 

By eliminating liquid effects from the frequency equation of a permeable surface (4.3), that is, 
setting b0, 120, 220, (A-Q2/R) , N, Q0, R0 and after rearrangement of the terms, the 
results for a purely elastic solid are obtained as a particular case considered by Christine Valle et al. [2]. The 
frequency equation of an impermeable surface (4.4) has no counterpart in the purely elastic solid.   

Now we consider two particular cases of the general frequency Eqs (4.3) and (4.4) of guided 
circumferential waves: (i) When the angular wave number vanishes. (ii) When the outer radius of the hollow 
poroelastic cylinder tends to infinity, the model under consideration (shaft-bearing assembly) reduces to the 
cylinder-piston assembly.  
(i) When the angular wave number n vanish, the frequency equation of a permeable surface that is Eqs 
(4.3) degenerates into the product 

 
   39 1 1 2M r D D 0                                                                        (4.5) 

 
where Mjk(r) are defined in the Appendix [see Eq.(A.1)] and D1, D2 are  
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 Similarly, when the wave number n vanishes, the frequency equation of an impermeable surface 

[Eq.(4.4)] degenerates into the product 
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where Njk(r) are defined in the appendix [see Eq.(A.2)] and D3, D4 are 
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 Equation (4.5) is satisfied if, M39(r1)=0, or D1=0 or D2=0. Equation M39(r1)=0, when simplified 

reduces to  *
2 3 1J r 0  , which is similar to the frequency equation of torsional vibrations discussed by 

Tajuddin and Sarma [12]. The equation D1=0, when simplified reduces to 

       2 3 1 2 3 2 2 3 2 2 3 1J r Y r J r Y r 0       which is the frequency equation of axially symmetric shear 

vibrations discussed by Malla Reddy and Tajuddin [7] and also similar to the frequency equation of torsional 
vibrations of hollow poroelastic cylinders discussed by Tajuddin and Ahmed Shah [4]. The equation  

 
  D2=0,                                                                             (4.9) 
 

 is the frequency equation of dilatational guided circumferential waves of the shaft-bearing assembly in the 
case of a permeable surface. From Eq.(4.5) we see that the dilatational and shear waves are uncoupled. It is 
important to note that the shear waves are uncoupled in the outer poroelastic cylinder (bearing) and the inner 
shaft. But the dilatational waves are coupled in shaft-bearing assembly. As discussed in the case of a 
permeable surface, from Eq.(4.7) we see that the frequency equation of dilatational circumferential waves for 
an impermeable surface is  
 

  D4=0,                                                                            (4.10) 
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also it can be noted that the frequency equation of shear vibrations is independent of nature of surface, that 
is, it is same for a permeable and an impermeable surface.  
(ii) When the outer radius of the outer poroelastic hollow cylinder (bearing) tends to infinity, the shaft-
bearing model reduces to the cylinder-piston assembly. Analogous displacements and stresses for a circular 
cylindrical cavity in an infinite porous medium are written replacing Bessel functions of first and second 
kind by Bessel function of third kind (Hankel function), Hn

(1) and Hn
(2). Hankel functions may be expressed 

in the form of Bessel functions of first and second kind   
 
  Hn

(1) = Jn + iYn,           Hn
(2) = Jn - iYn. 

 
 The Hankel function tends to zero as the argument becomes large, although the individual functions 

do not. For all values of n, the Hankel functions Hn
(1) and Hn

(2) are linearly independent. Hn
(1) represents 

waves propagating towards the origin while Hn
(2) represents waves diverging from the origin. Since there is 

no outer boundary, the terms containing Hn
(1) must vanish. The displacement and stresses may then be 

written in terms of Hn
(2). We see that after necessary calculations, Hn

(2) is to be transformed to the Bessel 
function of second kind Yn. Then the frequency equation of guided circumferential waves for the cylinder-
piston assembly in the case of a permeable surface is  

 

  

           

     
           
   

   

12 1 14 1 16 1 17 1 18 1 19 1

22 1 24 1 26 1

37 1 38 1 39 1

42 1 44 1 46 1 47 1 48 1 49 1

52 1 54 1

67 1 68 1

M r M r M r M r M r M r

M (r ) M (r ) M (r ) 0 0 0

0 0 0 M r M r M r
0

M r M r M r M r M r M r

M r M r 0 0 0 0

0 0 0 M r M r 0

 . (4.11) 

 
 Similarly, the frequency equation of guided circumferential waves for the cylinder-piston assembly 

in the case of an impermeable surface is  
 

  

           
     

     
           
   

   

12 1 14 1 16 1 17 1 18 1 19 1

22 1 24 1 26 1

37 1 38 1 39 1

42 1 44 1 46 1 47 1 48 1 49 1

52 1 54 1

67 1 68 1

N r N r N r N r N r N r

N r N r N r 0 0 0

0 0 0 N r N r N r
0.

N r N r N r N r N r N r

N r N r 0 0 0 0

0 0 0 N r N r 0

  (4.12) 

 
 In Eqs (4.11) and (4.12), the elements Mjk(r) and Njk(r) are defined in Eqs (A.1) and (A.2), 

respectively, in the appendix. Frequency Eqs (4.11) and (4.12) can be considered for zero angular wave 
number.   

 For further analysis of frequency Eqs (4.3) and (4.4), now we denote these equations by Δ1  and Δ2 , 
respectively. After necessary simplifications, Eq.(4.3) can be re-written as   

 

  11 12
1

21 22

0
 

  
 

                                                               (4.13) 

 
where the sub-determinants Δ jk  (j, k=1, 2) are  
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     
     
   
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11 47 1 48 1 49 1
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M r M r M r

M r M r M r

M r M r 0
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     
   

17 1 18 1 19 1

12 37 1 38 1 39 1

67 1 68 1

M r M r M r

M r M r M r

M r M r 0

  , 
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           
       
           
           
       

,

21 1 22 1 23 1 24 1 25 1 26 1

41 1 42 1 43 1 44 1 45 1 46 1

51 1 52 1 53 1 54 1
21

71 2 72 2 73 2 74 2 75 2 76 2

81 2 82 2 83 2 84 2 85 2 86 2

91 2 92 2 93 2 94 2

M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r 0 0

M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r 0 0

                     (4.14) 
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11 1 12 1 13 1 14 1 15 1 16 1
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51 1 52 1 53 1 54 1
22

71 2 72 2 73 2 74 2 75 2 76 2

81 2 82 2 83 2 84 2 85 2 86 2

91 2 92 2 93 2 94 2

M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r 0 0

M r M r M r M r M r M r

M r M r M r M r M r M r

M r M r M r M r 0 0

    

 
where the elements Mjk(r) are defined in the appendix [see Eq.(A.1)]. If the determinant Δ22  is singular, 

then it represents the frequency equation of guided circumferential waves in the hollow poroelastic cylinder 
for a permeable surface. This equation is similar (not same) to the frequency equation of plane-strain 
vibrations studied by Malla Reddy and Tajuddin [7] for a permeable surface. Then Eq.(4.13) reduces to 
Δ12 0  which represents the frequency equation of guided circumferential waves in a poroelastic solid 

cylinder of radius r1 for a permeable surface. Similarly, the frequency equation of an impermeable surface 
(4.4) can be simplified in the form  

 

            
* *

* *

Δ Δ
Δ

Δ Δ

11 12
2

21 22

0                                                                 (4.15) 

 

where the sub-determinants *Δ jk  (j, k=1, 2) are exactly same as the sub-determinants defined in Eqs (4.14) 

with Mjk(r) replaced by Njk(r), where Njk(r) are defined in the appendix [see Eq.(A.2)]. Analysis of Eq.(4.15), 
that is the frequency equation of an impermeable surface, is the same as that of the analysis of Eq.(4.13) 
described above.  

 
5. Non-dimensionalisation of frequency equation  

 
 The wave number is real for propagating modes in a non-dissipative medium. The non-dimensional 

frequency Ω (ωh/C0
*) as a function of the non-dimensional angular wave number is computed for two types 

of shaft-bearing models and the cylinder-piston models. The geometric parameter for the model under 
consideration is g=r2/r1. To analyze the frequency equations of permeable and impermeable surfaces, it is 
convenient to introduce the following non-dimensional parameters 

 



942  S.A.Shah and G.Apsar 

 

  

, , , ,

, , ,

* 1 * 1 * 1 * 1
1 2 3 4

* 1 * 1 * 1
11 11 12 12 22 22

a PH   a QH   a RH   a NH   

m   m   m

   

  

   

        

  

 

  

* * * *

* * *

, , , ,

, , ,
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  

   
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            (5.1) 

 

  
       

   

, , , ,

,

2 2 2 2* -1 * -1 * -1 * * *-1
1 0 1 1 0 2 1 0 3 1 0 1

2 2* * *-1 * * *-1
1 0 2 1 0 3

x V  V   y V  V    z V  V    x V  V   

 y V  V   z V  V

   

 

  

 
where H*=P*+2Q*+R*, *=*

11+2*
12+*

22. Also C*
0 and V*

0 are reference velocities (C*
0

2=N*/*, 
V*

0
2=H*/*). Frequency Eqs (4.3), (4.4), (4.11) and (4.12) are non-dimensionalised employing Eq.(5.1). 

These equations constitute a relation between the non-dimensional frequency and angular wave number.   
Parameters of two types of shaft-bearing assembly models are considered designated as Model-I and 

Model-II to compute the non-dimensional frequency. Model-I consists of a shaft made of sandstone saturated 
with kerosene (Fatt [13]) and the bearing made of sandstone saturated with water (Yew and Jogi [14]). 
Model-II consists of a shaft made of water saturated sandstone and a bearing made of kerosene saturated 
sandstone.   

 
The non-dimensional physical parameters of Model-I and Model-II are given in Tab.1 

 

Material 
Parameter 

a1 a2 a3 a4 m11 m12 m22 x1 y1 z1 

Model-I 0.445 0.034 0.015 0.123 0.887 -0.001 0.099 1.863 8.884 7.183 

Model-II 1.819 0.011 0.054 0.780 0.891 0 0.125 0.489 2.330 1.142 

 

b1 b2 b3 b4 n11 n12 n22 x1
* y1

* z1
* 

0.960 0.006 0.028 0.412 0.877 0 0.123 0.913 4.347 2.129 

0.843 0.065 0.028 0.234 0.901 -0.001 0.101 0.999 4.763 3.851 

 
6. Numerical results and discussion 
 

Since stress wave propagation is the phenomenon of energy transfer, it plays a major role in fretting. 
Thus for the analysis of frequency equations of guided circumferential waves, Eqs (4.3), (4.4), (4.11) and 
(4.12) are non-dimensionalised employing Eqs (5.1) for computational work. For a given poroelastic model, 
these frequency equations constitute a relation between the non-dimensional frequency and angular wave 
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number for fixed values of g. Different values of g, viz., 1.2362 and 5.0 are taken for numerical computation. 
The non-dimensional frequency is determined for different values of the angular wave number n and for 
fixed values of g, each for a permeable and an impermeable surface. The frequency of guided circumferential 
waves of first three modes of the shaft-bearing assembly for Model-I is presented in Fig.2 for a permeable 
and an impermeable surface. From the figure we see that waves are more dispersive in a permeable surface. 
The first two modes of an impermeable surface are almost linear. By increasing the thickness of the bearing, 
the frequency is obtained for Model-I and it is presented in Fig.3. Here we see that all the modes are linear 
when the wave number is more than 6, and before it they are more dispersive. The frequency of an 
impermeable surface is less than that of a permeable surface for first three modes. Also, in general, it is seen 
that the frequency is larger for Model-I with an increased thickness. Figures 4 and 5 show the frequency as a 
function of the wave number for Model-II for the shaft-bearing assembly. The variation of frequency in 
Figure.4 is similar to that in Fig.2 and in Fig.5 to that in Fig.3. The frequency of an impermeable surface is 
less than that of a permeable surface in this case also. The frequency is larger for Model-II than that of 
Model-I. The frequency of bore-piston assembly for Model-I is presented in Fig.6 for a permeable and an 
impermeable surface. From the figure it is seen that the frequency of an impermeable surface is more that of 
a permeable surface when the wave number is more than 6. And in this range, the frequency of a permeable 
surface is linear. This is in contrast with the shaft-bearing assembly. This is not the case for Model-II of the 
cylinder-piston assembly shown in Fig.7. Also, we see that the first mode of an impermeable surface is linear 
but not the other modes. Also, in general, the frequency for Model-II is more than that of Model-I. Also the 
frequency is obtained for the said Model-I and Model-II for a permeable and an impermeable surface for the 
shaft-bearing assembly and the cylinder-piston assembly for a small wave number in the interval [0, 1] and it 
is seen that the variation of frequency is similar as mentioned above.   
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Fig.2. Frequency as a function of wave number (shaft-bearing assembly, Model-I, g=1.2362). 
 
 
 
 
 
 
 



944  S.A.Shah and G.Apsar 

 

 

0

2

4

6

8

10

12

14

16

18

0 2 4 6 8 10 12 14 16 18 20

Fr
e

q
u

e
n

cy

Angular wave number

________Permeable Surface
- - - - - - - - - -Impermeable Surface

 
 

Fig.3. Frequency as a function of wave number (shaft-bearing assembly, Model-I, g=5). 
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Fig.4. Frequency as a function of wave number (shaft-bearing assembly, Model-II, g=1.2362). 
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Fig.5. Frequency as a function of wave number (shaft-bearing assembly, Model-II, g=5). 
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Fig.6. Frequency as a function of wave number (bore-piston assembly, Model-I). 
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Fig.7. Frequency as a function of wave number (bore-piston assembly, Model-II). 
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          , , , ,55 1 56 1 57 1 58 1 59 1M r 0      M r 0      M r 0      M r 0      M r 0      , 
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            , , , , ,61 1 62 1 63 1 64 1 65 1 66 1M r 0      M r 0      M r 0      M r 0      M r 0      M r 0      , 

 
 

              , ,* *2 * *2 * * *2 * *2 *
67 1 1 1 n 1 1 68 1 2 2 n 2 1 69 1M r R Q J r           M r R Q J r        M r 0           , 

 

         
2

2 2 21
71 2 n 1 2 1 1 1 n 1 22

2 2

2N n
M r J r 2N  - Q R - A Q J r

r r

                      
, 

 

         
2

2 2 21
72 2 n 1 2 1 1 1 n 1 22

2 2

2N n
M r Y r 2N  - Q R - A Q Y r

r r

                      
, 

 

         
2

2 2 22
73 2 n 2 2 2 2 2 n 2 22

2 2

2N n
M r J r 2N  - Q R - A Q J r

r r

                      
, 

 

         
2

2 2 22
74 2 n 2 2 2 2 2 n 2 22

2 2

2N n
M r Y r 2N  - Q R - A Q Y r

r r

                      
, 

 

      3
75 2 n 3 2 n 3 22

2 2

2Nin 2Nin
M r J r J r

r r

      , 

 

            , , ,3
76 2 n 3 2 n 3 2 77 2 78 2 79 22

2 2

2Nin 2Nin
M r Y r Y r      M r 0      M r 0      M r 0

r r

      ξ ξ , 

 

      1
81 2 n 1 2 n 1 22

2 2

2Nin Nin
M r J r J r

r r

     
        

     1
82 2 n 1 2 n 1 22

2 2

2Nin Nin
M r Y r Y r

r r

      , 

 

      2
83 2 n 2 2 n 2 22

2 2

2Nin Nin
M r J r J r

r r

                 2
84 2 n 2 2 n 2 22

2 2

2Nin Nin
M r Y r Y r

r r

       

 

      
2

23
85 2 n 2 2 3 n 3 22

2 2

2n
M r J r J r

r r

         
 

                
2

23
86 2 n 3 2 3 n 3 22

2 2

2n
M r Y r Y r

r r

         
   

 
      , ,87 2 88 2 89 2M r 0               M r 0              M r 0   , 

 

            ,2 2 2 2
91 2 1 1 n 1 2 92 2 1 1 n 1 2M r R Q J r           M r R Q Y r          , 

 

            ,2 2 2 2
93 2 2 2 n 2 2 94 2 2 2 n 2 2M r R Q J r           M r R Q Y r          , 

 
          , , , ,95 2 96 2 97 2 98 2 99 2M r 0      M r 0      M r 0     M r 0      M r 0.                          …..(A.1) 
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     , andjk jkN r M r           j 1, 2,3,4,7,8,      k 1, 2,3,4,5,6,7,8,9   , 

 

            ,2 3 2 3
51 1 1 1 n 1 1 52 1 1 1 n 1 1N r R Q J r        N r R Q Y r           , 

 

            ,2 3 2 3
53 1 2 2 n 2 1 54 1 2 2 n 2 1N r R Q J r        N r R Q Y r           , 

 
          , , , ,55 1 56 1 57 1 58 1 59 1N r 0      N r 0      N r 0      N r 0      N r 0     , 

 
            , , , , ,61 1 62 1 63 1 64 1 65 1 66 1N r 0      N r 0      N r 0      N r 0      N r 0      N r 0      , 
 

              , ,* *2 * *3 * * *2 * *3 *
67 1 1 1 n 1 1 68 1 2 2 n 2 1 69 1N r R Q J r           N r R Q J r        M r 0            , 

 

            ,2 3 2 3
91 2 1 1 n 1 2 92 2 1 1 n 1 2N r R Q J r           N r R Q Y r           , 

 

            ,2 3 2 3
93 2 2 2 n 2 2 94 2 2 2 n 2 2N r R Q J r           N r R Q Y r           , 

 

          , , , ,95 2 96 2 97 2 98 2 99 2N r 0      N r 0     N r 0      N r 0     N r 0.              …..(A.2) 
 
Nomenclature 

 
 A, N, Q, R   poroelastic constants of bearing   
 A*, N*, Q*, R*   poroelastic constants of shaft   
 b   dissipation 

 * *
0 0C , V    reference velocities 

 g   ratio of outer to inner radius 

 (1) (2)
n nH , H    Hankel function [Bessel function of third kind] 

 n nJ ,Y    Bessel functions of first and second kind of order n 

 n   angular wavenumber 
 ( , θ, )r z    cylindrical polar coordinates 

 2 1r , r    outer radius bearing, inner radius of shaft respectively 

 ( , , )rU U 0U    displacement of liquid 

  ru ,v ,0u    displacement of solid 

 V1, V2   dilatational wave velocities of first and second kind respectively 
 V3   shear wave velocity 
 Ω    non-dimensional frequency 
 ω    circular frequency 

 2    Laplacian operator 
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