PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Safety distances for fires in underground hard rock mines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Preventing the ignition of combustibles in an underground mine will be one of the decisive actions affecting the risk to mining personnel during a fire. This study focuses on the application of safety distances in underground hard rock mines, where a safety distance will ensure that the incipient heat flux upon the fuel surface will not be sufficient for ignition. No earlier study has been conducted on safety distances in underground mines, and where data from earlier fire experiments and studies were applied. Safety distances were calculated using empirical expressions, accounting for influencing parameters. It was found that safety distances varied very little with the longitudinal flow velocity. The mine drift height was found to have a larger impact due to occurring flame deflection. The safety distances for a site with flammable/combustible liquid or electrical cables were found to be higher for higher drift heights, caused by the other fuel items having higher critical heat fluxes, which are attained closer to the fire, where the flames are tilted closer to the fuel surface for a lower drift height. The tilting effect will decrease with increasing distance, and eventually, the heat flux values will be higher for a higher drift height.
Rocznik
Strony
299--319
Opis fizyczny
Bibliogr. 37 poz.
Bibliografia
  • [1] Hansen R. Study of heat release rates of mining vehicles in underground hard rock mines. Vasteras, Sweden: Malardalen University; 2015.
  • [2] Zarate L, Arnaldos J, Casal J. Establishing safety distances for wildland fires. Fire Saf J 2008;43:565e75. https://doi.org/10. 1016/j.firesaf.2008.01.001.
  • [3] Da Silva Santos F, Landesmann A. Thermal performancebased analysis of minimum safe distances between fuel storage tanks exposed to fire. Fire Saf J 2014;69:57e68. https://doi.org/10.1016/j.firesaf.2014.08.010.
  • [4] Engeb0 A, Barth F, Markert F, Middha P, Wardman W, Chaineaux J, Sebarnescu D, Baraldi D, Nilsen S, Tchouvelev AV, Versloot N, Marangon A. Safety distances for hydrogen refuelling station. In: Proceedings of the 18th world hydrogen energy conference 2010 - WHEC 2010, may 16-21; 2010. p. 237e42. Essen, Germany; 2010.
  • [5] Hansen R. Site inventory of operational mines e fire and smoke spread in underground mines1. Vasteras, Sweden: University of Malardalen, MdH SiST; 2010.
  • [6] Hansen R. Fire statistics from the mining industry in New South Wales, Queensland and Western Australia. Brisbane, Australia: The University of Queensland; 2018.
  • [7] Mines Inspectorate (1st of January 2008 e April 2017). Serious accidents and high potential incidents. Brisbane, Australia: Queensland Government, Department of Natural Resources and Mines.
  • [8] Resources Safety (July 2014 e July 2017). Mining incident summaries. Perth, Australia: Government of Western Australia, Department of Mines, Industry Regulation and Safety.
  • [9] Hansen R. Investigation on fire causes and fire behaviour e vehicle fires in underground mines in Sweden 1988-20103. Vasteras, Sweden: University of Malardalen, MdH SiST; 2013. p. 2013.
  • [10] De Rosa MI. Analysis of mine fires for all US metal/non-metal mining categories, 1990-2001. Pittsburgh: NIOSH; 2004.
  • [11] De Rosa MI. Analyses of mobile equipment fires for all US surface and underground coal and metal/non-metal mining categories, 1990-1999. Pittsburgh: NIOSH; 2004.
  • [12] Hansen R. Analysis of methodologies for calculating the heat release rates of mining vehicle fires in underground mines. Fire Saf J 2015;71:194e216. https://doi.org/10.1016/j.firesaf. 2014.11.008.
  • [13] Hansen R. Proposed design fire scenarios for underground hard rock mines. J Sustain Min 2022;21:261e77. https://doi. org/10.46873/2300-3960.1367.
  • [14] The Fire Safety Committee of the Swedish Mining Industry’s Health and Safety Committee. Fire safety in mines and underground constructions. Stockholm, Sweden: SveMin; 2010.
  • [15] National Fire Protection Association. Standard for fire prevention and control in metal/nonmetal mining and metal mineral processing facilities. Quincy, USA: NFPA; 2019.
  • [16] Cox G. Combustion fundamentals of fire. London: Academic Press; 1995.
  • [17] Ingason H, Li YZ. Fire Saf J 2010;45:371e84. https://doi.org/ 10.1016/j.firesaf.2010.07.004.
  • [18] Hottel HC. Radiant heat transmission between surfaces separated by non-absorbing media. Trans. ASME 1931;53: 265e73. FSP-53-196.
  • [19] Hamilton DC, Morgan WR. Radiant-interchange configuration factors. Washington DC: NASA; 1952. NASA TN 2836.
  • [20] Howell JR, Siegel R, Pinar MengUQ M. Thermal radiation heat transfer. fifth ed. Boca Raton, Florida: CRC Press; 2011.
  • [21] Li YZ, Ingason H. Maximum ceiling temperature in a tunnel fire. Boras, Sweden: Swedish National Testing and Research Institute; 2010. SP Report 2010:51.
  • [22] Li YZ, Ingason H. Fire-induced ceiling jet characteristics in tunnels under different ventilation conditions. Boras, Sweden: Swedish National Testing and Research Institute; 2015. SP Report 2015:23.
  • [23] Khan MM, Tewarson A. Characterization of hydraulic fluid spray combustion. Fire Technol 1991;27:321e33. https://doi. org/10.1007/BF01039883.
  • [24] Zalosh RG. Industrial fire protection engineering. Chichester, United Kingdom: John Wiley & Sons; 2003.
  • [25] Hansen R. Varying heat release rates per unit area e The impact in underground mines. Rev Minelor 2023;29:1e28. https://doi.org/10.2478/minrv-2023-0028.
  • [26] Babrauskas V. Ignition handbook. Issaquah, USA: Fire Science Publishers; 2003.
  • [27] Harper CA. Handbook of materials for fire protection. New York: McGraw-Hill; 2004.
  • [28] Putorti AD, Evans DD, Tennyson EJ. Ignition of weathered and emulsified oils. Gaithersburg, USA: National Institute of Standards and Technology; 2003. NIST SP 995.
  • [29] Hansen R. Design of fire scenarios for Australian underground hard rock mines e Applying data from full-scale fire experiments. J Sustain Min 2019;18:163e73. https://doi.org/ 10.1016/j.jsm.2019.07.003.
  • [30] Hansen R, Ingason H. Full scale fire experiments with mining vehicles in an underground mine. Vasteras, Sweden: Malardalen University; 2013. Research report SiST 2013:2.
  • [31] Arvidson M. Down-scaled fire tests using a trailer mock-up. Boras, Sweden: Swedish National Testing and Research Institute; 2008. SP report 2008:42.
  • [32] Joyeux D. Development of design rules for steel structures subjected to natural fires in closed car parks. Saint-Rémy-des-Chevreuse, France: Centre Technique Industriel de la Construction Métallique; 1997. INC-96/294d-DJ/VG.
  • [33] Evarts EC. Lithium batteries: to the limits of lithium. Nature 2015;526:S93e5. https://doi.org/10.1038/526S93a.
  • [34] Lecocq A, Bertana M, Truchot B, Marlair G. Comparison of the fire consequences of an electric vehicle and an internal combustion engine vehicle. In: Proceedings of the 2nd international conference on fires in vehicles-FIVE 2012. Boras: SP Fire Technology; 2012.
  • [35] Hansen R. Design fires in underground mines. Vasteras, Sweden: University of Mcalardalen; 2010. MdH SiST 2010:2.
  • [36] Hansen R. Design fire scenarios involving non-fire resistant conveyor belts e Numerical study. Int J Min Mater Metall Eng 2021;7:1e15.
  • [37] Janssens M. Thermophysical properties of wood and their role in enclosure fire growth. Ghent, Belgium: The University of Ghent; 1991.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a88ae552-8c59-44c3-a308-088302b83e66
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.