Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
High pressure die casting technology (HPDC) is a method enabling the production of shape-complex casts with good mechanical properties, with high repeatability of production within narrow tolerance limits. However, the casts show, to some extent, basic porosity, which may reduce their mechanical and qualitative properties. One of the main areas to focus on in order to reduce the porosity of casts is the correct design and structure of the gating and overflow system. Submitted article is devoted to the assessment of the connecting channel cross-section design for connecting the overflows to the cast on selected parameters of the casting process. Five different cross-section designs of connecting channels are considered, enabling the removal of gases and vapors from the volume during the molding. The connecting channels are designed with a constant width g = 10mm and variable height h1 =1.50 mm, h2 = 1.25 mm, h3 = 1.00 mm, h4 = 0.75 mm and h5 = 0.6 mm. The primary monitored parameter is the gas entrapment in selected points of the cast. The following is an evaluation of the pressure conditions change in the mold cavity at the end of the filling mode and local overheating of the mold material just below the surface of the mold face. With regard to the monitored parameters, based on the performed analyzes, the most suitable design solution of the connecting channel is assessed and recommendations for the design and structure of the overflows and their connection to the cast are derived.
Czasopismo
Rocznik
Tom
Strony
75--80
Opis fizyczny
Bibliogr. 16 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Institute of Technology and Business in České Budějovice, Czech Republic
autor
- Technical University of Košice, Faculty of Manufacturing Technologies with the Seat in Prešov, Slovak Republic
Bibliografia
- [1] Gaspar, S., Pasko, J., Majernik, J. (2017). Influence of structure adjustment of gating system of casting mould upon the quality of die cast. Lüdenscheid: RAM-Verlag.
- [2] Pasko, J., Gaspar, S. (2014). Technological factors of die casting. Lüdenscheid: RAM-Verlag.
- [3] Ruzbarský, J., Pasko, J., Gaspar, S. (2014). Techniques of Die casting. Lüdenscheid: RAM-Verlag.
- [4] Majernik, J. (2019) The issue of the gating system design for permanent dies (Problematika návrhu vtokových soustav permanentních forem pro lití kovů pod tlakem). Stalowa Wola: Wydawnictwo Sztafeta Sp. z.o.o.
- [5] ČSN 22 8601. Construction of compression casting moulds: Instructions (Formy tlakové licí: Zásady pro navrhování). Praha: Český normalizační institute, 1984. 32.
- [6] El-Fotouh, M.R.A., Shash, A.Y. & Gadallah, M.H. (2018). Semi-automated gating system design with optimum gate and overflow positions for aluminum HPDC. In A. Öchsner & H. Altenbach (Eds.) Improved Performance of Materials (37-51). Cham, Switzerland:Springer Verlag. DOI: 10.1007/978-3-319-59590-0_4.
- [7] Pinto, H.A., et al. (2019). Improvement and validation of Zamak die casting moulds. In 29th International Conference on Flexible Automation and Intelligent Manufacturing, 24-38 June 2019 (pp. 1547-1557). Limerick; Ireland: Elsevier B.V.. DOI: 10.1016/j.promfg.2020.01.131.
- [8] Chavan, R. & Kulkarni, P.S. (2020). Die design and optimization of cooling channel position for cold chamber high pressure die casting machine. In 2nd International Conference on Emerging trends in Manufacturing, Engines and Modelling, 23-24 December 2019 (Article number 012017). Mumbai, India: Institute of Physics Publishing. DOI: 10.1088/1757-899X/810/1/012017.
- [9] Dabhole, S.S., Kurundwad, C.A. & Prajapati, S.R. (2017). Design and development of die casting die for rejection reduction. International Journal of Mechanical Engineering and Technology. 8(5), 1061-1070.
- [10] Altuncu, E., Doğan, A. & Ekmen, N. (2019). Performance evaluation of different air venting methods on high pressure aluminum die casting process. Acta Physica Polonica A. 135(4), 664-667. DOI: 10.12693/APhysPolA.135.664.
- [11] Zhao, X. et al. (2018). Gating system optimization of high pressure die casting thin-wall AlSi10MnMg longitudinal loadbearing beam based on numerical simulation. China Foundry. 15(6), 436-442. DOI: 10.1007/s41230-018-8052-z.
- [12] Qin, X.-Y., Su, Y., Chen, J. & Liu, L.-J. (2019). Finite element analysis for die casting parameters in high-pressure die casting process. China Foundry. 16(4), 272-276. DOI: 10.1007/s41230-019-8088-8.
- [13] Cleary, P.W., Savage, G., Ha, J. & Prakash, M. (2014). Flow analysis and validation of numerical modelling for a thin walled high pressure die casting using SPH. Computational Particle Mechanics. 1(3), 229-243. DOI: 10.1007/s40571-014-0025-4.
- [14] Majernik, J. & Podaril, M. (2019). Influence of runner geometry on the gas entrapment in volume of pressure die cast. Archives of Foundry Engineering. 19(4), 33-38. DOI: 10.24425/afe.2019.129626.
- [15] Dańko, R., Dańko, J. & Stojek, J. (2015). Experiments on the Model Testing of the 2nd Phase of Die Casting Process Compared with the Results of Numerical Simulation. Archives of Foundry Engineering. 15(4), 21-24. DOI: 10.1515/afe-2015-0072.
- [16] Gaspar, S. & Pasko, J. (2016). Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast. Archives of Foundry Engineering. 16(2), 45-50. DOI: 10.1515/afe-2016-0024.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a88ab045-ba7a-4bd6-9677-c9d646187535