PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Single-circuit equivalent of a double-circuit line with parallel operation of circuits

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Jednoprzewodowy odpowiednik linii dwutorowej z równoległą pracą obwodów
Języki publikacji
EN
Abstrakty
EN
Analysis of modes in circuits with two-chain lines sometimes requires reducing them to an equivalent single-chain line. The solution to this problem for a single-line circuit is known, and there are corresponding expressions for determining the coefficients of an equivalent 4-pole in terms of the coefficients of the original 4-poles. However, in some cases, there is a need to analyze modes in a 3-phase formulation, where there may be schemes with parallel 3-phase circuits. In this case, the problem arises of reducing parallel independent 3-phase lines to a 3-phase equivalent. For this purpose, the modal method for determining matrix phase coefficients is used. A special approach is required when converting a 6-phase line (two circuits on the same support) to a 3-phase circuit, when it is necessary to consider the mutual influence of the circuits. This research aims to provide a solution to the problem of reducing a 6-phase line to a 3-phase equivalent in parallel operation of circuits. Calculations based on the proposed algorithm for the 3-phase equivalent of a 500 kV 6-phase line with a length of 500 km are presented. The results satisfy the fundamental property of the n-th order multipole coefficients.
PL
Analizując mody w obwodach z liniami podwójnymi, czasami zachodzi potrzeba ich zredukowania do równoważnej linii jednotorowej. Rozwiązanie tego problemu dla obwodu jednoliniowego jest znane i istnieją odpowiednie wyrażenia umożliwiające określenie współczynników równoważnej sieci 4-portowej poprzez współczynniki oryginalnych sieci 4-portowych. Jednak w wielu przypadkach zachodzi potrzeba analizy trybów w układzie 3-fazowym i w tym przypadku mogą występować obwody z równoległymi obwodami 3-fazowymi. W tym przypadku pojawia się zadanie doprowadzenia równoległych niezależnych linii 3-fazowych do odpowiednika 3-fazowego. Do tych celów wykorzystuje się modalną metodę wyznaczania współczynników fazowych macierzy. Szczególnego podejścia wymaga zamiana linii 6-fazowej (dwa obwody na jednym wsporniku) na obwód 3-fazowy, gdy konieczne jest uwzględnienie wzajemnego wpływu obwodów. W artykule zaproponowano rozwiązanie problemu doprowadzenia linii 6-fazowej do odpowiednika 3-fazowego, gdy obwody pracują równolegle. Obliczenia z wykorzystaniem zaproponowanego algorytmu przedstawiono dla trójfazowego odpowiednika 6-fazowej linii 500 kV o długości 500 km. Wyniki obliczeń spełniają podstawową właściwość, jaką posiadają współczynniki sieci wieloportowej n-tego rzędu.
Rocznik
Strony
71--76
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Department of Electrical Engineering, Canadian University Dubai, Dubai, 118871, United Arab Emirates
  • Department of Automated Electric Power Systems, Novosibirsk State Technical University, 20, Prospekt K. Marx, Novosibirsk, 630073, Russian Federation
  • Department of Automated Electric Power Systems, Novosibirsk State Technical University, 20, Prospekt K. Marx, Novosibirsk, 630073, Russian Federation
  • Department of Automated Electric Power Systems, Novosibirsk State Technical University, 20, Prospekt K. Marx, Novosibirsk, 630073, Russian Federation
  • Department of Automated Electrical Systems, Ural Federal University, 19, Mira Street, Yekaterinburg, 620002, Russian Federation
  • Department of Electrical Engineering, Canadian University Dubai, Dubai, 118871, United Arab Emirates
  • Department of Automated Electric Power Systems, Novosibirsk State Technical University, 20, Prospekt K. Marx, Novosibirsk, 630073, Russian Federation
Bibliografia
  • [1] Venkata S.S. et. al., 138-kV, Six-phase Transmission System: Fault Analysis, IEEE Power Engineering Review, (1982), Vol. PER-2, No. 5, 40-41.
  • [2] Stewart J.R., Grant I.S., High Phase Order - Ready for Application, IEEE Transactions on Power Apparatus and System, (1982), Vol. PAS-101, No. 6, 1757-1767.
  • [3] Barnes H.C., Barthold L.O., High Phase Order Power Transmission, CIGRE SC31, Electra, (1973), No. 24, 139−153.
  • [4] Grant I.S., Stewart J.R., Wilson D.D., Garrity T.F., High Phase Order Transmission Line Research, CIGRE Symposium, (1981), No. 220, 22-81.
  • [5] Misrikhanov M.Sh., Popov V.D., Yakimchuk N.N. Medov R.V., Mutual influence of double-circuit overhead lines and their impact on the mode of electrical systems, Electric stations, (2001), No. 2, 52-58.
  • [6] Vedernikov A.S., Gainullin R.A., Shishkov E.M., Application of the theory of generalized four-terminal networks for calculating steady-state modes of double-circuit overhead power lines, News of higher educational institutions. Energy issues, (2011), No. 5-6, 86-90.
  • [7] Vedernikov A.S., Goldstein V.G., Shishkov E.M., Method of calculating steady-state modes of multi-circuit overhead power lines, Scientific problems of transport in Siberia and the Far East. (2012), No. 1, 400-403.
  • [8] Kryukov A. et. al., Power Flow Modeling of Multi-Circuit Transmission Lines, Energies, (2022), No. 21, 8249.
  • [9] Chen X., et. al., Optimal phase sequence of multi-circuit transmission lines on the same tower, 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), (2017), 2904-2908.
  • [10] Ji Y.F., Jun Zou, Optimized phase sequence arrangements for multiple-loop power lines with vertical arrangements, High Voltage Engineering, (2008), No. 1, 172-175.
  • [11] Gerendás D., Novothny F., Transmission line with asymmetrical phase arrangement, Proceedings of the 2011 3rd International Youth Conference on Energetics (IYCE), (2011), 1-7.
  • [12] Zhang Xiao et. al., Research on optimized phase sequence arrangements for 500 kV quadruple-circuit transmission line on the same tower, Electric Power, (2010), No. 2, 44-47.
  • [13] Feng G., Yanxin W., Bingyi Zh., Study on electromagnetic environment of multi-circuit transmission lines on same tower, In 2008 Joint International Conference on Power System Technology and IEEE Power India Conference, (2008), 1-5.
  • [14] Venikov V.A., Long-distance power transmission: Special. Questions, Gosenergoizdat, (1960), p. 312.
  • [15] Melnikov N.A., Matrix method of analysis of electrical circuits, Energy, (1972), p. 231.
  • [16] Gershengorn A.I., Golembo Z.B., Unbalance of currents and voltages in electrical systems containing 750 kV lines, Energy, (1974).
  • [17] Losev S.B., Chernin A.B., Calculation of electrical quantities in asymmetrical modes of electrical systems, Energoatomizdat, (1983), p. 528.
  • [18] Bratslavsky S.Kh., Gershengorn A.I., Losev S.B., Special calculations of ultra-high voltage power transmission, Energoatomizdat, (1985), p. 312.
  • [19] Berman A.P., Calculation of asymmetrical modes of electrical systems using phase coordinates, Electricity, (1985), No. 12.
  • [20] Karasev D.D., Karasev E.D., Maslyankov V.B., Calculation on a computer of asymmetrical modes of electrical networks from multi-phase multi-terminal networks, Energetik, (1986), No. 10, p. 30.
  • [21] Guseinov A.M., Calculation in phase coordinates of asymmetric steady-state modes in complex systems, Electricity, (1989), No. 3.
  • [22] Krasilnikova T.G., Assessment of asymmetry levels in normal modes of the configured Siberia-Ural Power Transmission, In Proceedings of the international scientific and technical conference “Transmission of energy by alternating current over long and ultra-long distances”, (2003) Vol. 1.
  • [23] Krasilnikova T.G., Analysis of asymmetrical modes in long-distance power transmissions in phase coordinates, Scientific problems of transport in Siberia and the Far East, (2008), No. 2, 223−226.
  • [24] Zilberman S.M., Krasilnikova T.G., Samorodov G.I., Balancing the normal mode in three-phase ultra-high voltage overhead lines, Scientific problems of transport in Siberia and the Far East, (2010), No. 1, 235–237.
  • [25] Krasilnikova T.G., Anokhin B.A., Matrix models of extended networks for calculating asymmetric modes, In International youth scientific and technical conference “Control, information and optimization in electric power systems”, (2011), 21-24.
  • [26] Krasilnikova T.G., Samorodov G.I., Physico-technical foundations of long-distance AC power transmission, NSTU Publishing House, (2019), p. 300.
  • [27] Bumtsend, U. et al., The unbalanced modes analyze of traction loads network, In 2020 Ural Symposium on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT) IEEE, (2020), 0456-0459
  • [28] Kostenko M.V., Perelman L.S., Shkarin Yu.P., Wave processes and electrical noise in multiwire high voltage lines, Energy (1973), p. 272.
  • [29] Asanov M.S., Kokin S.E., Asanova S.M., Satarkulov K., Dmitriev S.A., Safaraliev M.Kh. The use of Petri computing networks for optimization of the structure of distribution networks to minimize power losses. Energy Reports 6, 2020, pp.1337-1343.
  • [30] Dzhuraev S., Beryozkina S., Kamolov M., Safaraliev M., Zicmane I., Nazirov K., & Sultonov S. Computation of the zero-wire current under an asymmetric nonlinear load in a distribution network. Energy Reports, 2022, 8, 563-573.
  • [31] Dyakov A.F., Electrical networks of ultra- and ultra-high voltage UES of Russia. Theoretical and practical foundations, Energoprogress, (2012), Vol. 1, p. 696.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8848488-66d9-4296-8d64-bc00947496a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.