Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
AISI 316L/TiB2/2p composites were manufactured by HP-HT using different pressures (5 and 7 GPa) and temperatures (900-1300°C), with constant reinforcing particle content 2 vol%. The mechanical properties of the composites were evaluated on the basis of hardness (HV0.3) and compression tests (20°C, 10-5 s-1). The results showed that the role of sintering pressure increased with increasing process temperature. At temperatures of 900°C and pressures of 5 and 7 GPa the difference in measured values of compressive strength was 1-2%, while at 1300°C they reached 20%. At constant pressure of 5 GPa, a change in hardness and compressive strength of 40% were obtained with a temperature change of 900 to 1300°C. Changes in mechanical properties in the composite occurred without substantial changes in density, microstructure, reinforcement phase distribution, and phase composition in the matrix.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1585--1592
Opis fizyczny
Bibliogr. 54 poz., fot., rys., tab., wzory
Twórcy
autor
- Pedagogical University of Krakow, Institute of Technology, 2 Podchorazych Str., 30-084, Kraków, Poland
autor
- Pedagogical University of Krakow, Institute of Technology, 2 Podchorazych Str., 30-084, Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
autor
- AGH University of Science and Technology, Faculty of Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland
Bibliografia
- [1] B. Basu, G. B. Raju, A. K. Suri, Inter. Mater. Rev. 51 (6), 352-374 (2013).
- [2] V. I. Matkovich, Boron and Refractory Borides, Springer Science & Business Media, Berlin, Heidelberg (2012).
- [3] R. Koonigshofer, S. Fuurnsinn, P. Steinkellner, W. Lengauer, R. Haas, K. Rabitsch, M. Scheerer, Inter. J. Ref. Met. Hard Mater. 23 (4-6), 350-357 (2005).
- [4] N. R. Baddoo, J. Constr. Steel Res. 64 (11), 1199-1206 (2008).
- [5] P. Marshall, Austenitic Stainless Steels, Microstructure and mechanical properties, Springer Science & Business Media (1984).
- [6] A. Fedrizzi, M. Pellizzari, M. Zadra, E. Marin, Microstructural study and densification analysis of hot work tool steel matrix composites reinforced with TiB2 particles, Mater. Char. 86, 69-79 (2013).
- [7] E. Olejnik, L. Szymanski, P. Kurtyka, T. Tokarski, B. Grabowska, P. Czapla, Archives of Foundry Engineering 16 (2), 89-94 (2016).
- [8] B. Li, Y. Liu, J. Li, H. Cao, L. He, J. Mater. Process Tech. 210 (1), 91-95 (2010).
- [9] I. Sulima, R. Kowalik, Mater. Sci. Eng. A 639, 671-680 (2015).
- [10] I. Sulima, L. Jaworska, P. Figiel, Arch. Metall. Mater. 59 (1), 205-209 (2014).
- [11] I. Sulima, G. Boczkal, Mater. Sci. Eng. A 644, 76-78 (2015).
- [12] V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal, Mater. Sci. Eng. R-Reports 54 (5-6), 121-285 (2006).
- [13] E. Olejnik, G. Sikora, S. Sobula, T. Tokarski, B. Grabowska, Materials Science Forum 782, 527-532 (2014).
- [14] E. Olejnik, L. Szymanski, P. Kurtyka, T. Tokarski, W. Maziarz, B. Grabowska, P. Czapla, Archives of Foundry Engineering 16 (3), 77-82 (2016).
- [15] E. Fraś, A. Janas, P. Kurtyka, S. Wierzbinski, Arch. Metall. Mater. 48, 384-408 (2003).
- [16] E. Fras, A. Janas, P. Kurtyka, S. Wierzbinski, Arch. Metall. Mater. 49, 113-141 (2004).
- [17] L. Blaz, M. Sugamata, J. Kaneko, J. Sobota, G. Wloch, W. Bochniak, A. Kula, J. Mater. Proc. Tech. 209 (9), 4329-4336 (2009).
- [18] K. Bryla, J. Dutkiewicz, L. Litynska-Dobrzynska, L. L. Rokhlin, P. Kurtyka, Arch. Metall. Mater. 57 (3), 711-717 (2012).
- [19] B. Mani, M. H. Paydar, J. Alloys Comp. 492 (1-2), 116-121 (2010).
- [20] K. Bryla, J. Dutkiewicz, L. L. Rokhlin, L. Litynska-Dobrzynska, K. Mroczka, P. Kurtyka, Arch. Metall. Mater. 58 (2), 481-487 (2013).
- [21] R. S. Mishra, Z. Y. Ma, Mater. Sci. Eng. R-Reports 50 (1-2), 1-78 (2005).
- [22] G. J. Fernandez, L. E. Murr, Mater. Charact. 52 (1) 65-75 (2004).
- [23] P. Kurtyka, N. Rylko, T. Tokarski, A. Wojcicka, A. Pietras, Comp. Structure 133, 959-967 (2015).
- [24] L.-W. Yin, Z.-D. Zou, M.-S. Li, Y.-X. Liu, Z.-Y. Hao, App. Phys. A 71 (4), 457-459 (2000).
- [25] P. Klimczyk, V. S. Urbanovich, Arch. Mater. Sci. Eng. 39 (2), 92-96 (2009).
- [26] J. Pantic, V. Urbanovich, V. Poharc-Logar, B. Joki, M. Stojmenovi, A. Kremenovi, B. Matovi, Phys. Chem. Minerals 41 (10), 775-782 (2014).
- [27] P. Wyzga, L. Jaworska, M. Bucko, P. Putyra, A. Kalinka, Composites 11 (1), 34-38 (2011).
- [28] F. Bundy, Ultra-high pressure apparatus, Physics Reports 167 (3), 133-176 (1988).
- [29] M. Eremets, High Pressure Experimental Methods, Oxford Science Publications, Oxford University Press, (1996).
- [30] L. Jaworska, Materials Engineering 2, 72-75 (1999).
- [31] T. Pieczonka, J. Kazior, A. Tiziani, A. Molinari, J. Mater. Proc. Techn. 64 (1-3), 327-334 (1997).
- [32] G. S. Upadhyaya, S. K. Mukherjee, Mater. Des. 6 (6), 323-327 (1985).
- [33] I. Sulima, P. Klimczyk, P. Hyjek, Arch. Mater. Sci. Eng. 39 (2), 103-106 (2009).
- [34] D. C. Ludwigson, Metall. Trans. 2 (10), 2825-2828 (1971).
- [35] H. J. Hollomon, Tensile deformation, Transactions of the Metallurgical Society of AIME 162, 268-290 (1945).
- [36] D. Lee, Metall. Trans. 1 (6), 1607-1616 (1970).
- [37] C. Sellars, W. M. Tegart, Inter. Mater. Rev. 17, 1-23 (1972).
- [38] D. J. Drobnjak, J. G. Parr, Metall. Trans. 1 (4), 759-765 (1970).
- [39] M. Selin, Metal. Mater. Trans. A 41 (11), 2805-2815 (2010).
- [40] S. S. Wu, S. Y. Chen, D. Gan, Mater. Sci. Eng. A 127 (2), L1-L5 (1990).
- [41] J. W. Simmons, Metall. Mater. Trans. A 26 (10), 2579-2595 (1995).
- [42] J. Lesage, D. Chicot, O. Bartier, M. A. Zampronio, P.E.V. de Miranda, Mater. Sci. Eng. A 282 (1), 203-212 (2000).
- [43] E. I. Samuel, B. K. Choudhary, K. Rao, Scr. Mater. 46 (7), 507-512 (2002).
- [44] D. J. Lloyd, Scr. Mater. 48 (4) 341-344 (2003).
- [45] B. Inem, Mater. Sci. Eng. A 197 (1), 91-95 (1995).
- [46] K. G. Samuel, Journal Phys. D: Applied Physics 39 (1), 203-212 (2005).
- [47] S. Hertele, W. De Waele, R. Denys, Int. J. Non-Linear Mech. 46 (3), 519-531 (2011).
- [48] B. P. Kashyap, K. Tangri, Acta Metall. Mater. 43 (11), 3971-3981 (1999).
- [49] N. Kurgan, Mater. Des. 55, 235-241 (2014).
- [50] B. Verlee, T. Dormal, J. Lecomte-Beckers, Pow. Metall. 55 (4), 260-267 (2012).
- [51] M. Dewidar, Inter. J. Mech. Mech. Eng. 12 (1), 10-24 (2012).
- [52] A. Szymanska, D. Oleszak, A. Grabias, M. Rosinski, K. Sikorski, J. Kazior, A. Michalski, K. J. Kurzydlowski, Rev. Adv. Mater. Sci. 8 (2), 143-146 (2004).
- [53] Z. G. Liu, X. J. Hao, K. Masuyama, K. Tsuchiya, M. Umemoto, S. M. Hao, Scr. Mater. 44 (8-9) 1775-1779 (2001).
- [54] M. Umemoto, Z. Liu, Y. Xu, K. Tsuchiya, Metall. Mater. Trans. A 33 (7) 2195-2203 (2002).
Uwagi
EN
The authors would like to thank Institute of Advanced Manufacturing Technology in Cracow, for her help in the HP-HT sintering of the composites. This work has been founded by the Research Fund of the Faculty of Mathematics, Physics and Technical Science of Pedagogical University of Krakow.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8846fbd-b5f0-47b5-b360-4de4a31719a5