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1. INTRODUCTION

Oscillatory analysis of second order linear ordinary differential equations is one of the
important problems in the qualitative theory of differential equations and it is the
subject of numerous papers (see [16] and cited works therein [1, 2, 4, 5, 7–15,17]).

Let q(t) be a continuous real function on [t0; +∞). Consider the equation

φ′′(t) + q(t)φ(t) = 0. (1.1)

Throughout the following we assume that the solutions of the considered equations
are real-valued.

Definition 1.1. Equation (1.1) is said to be oscillatory if each of its solutions has
arbitrary large zeroes.

The study of oscillatory behavior of second order linear ordinary differential
equations has developed in two directions: the goal of the first one is to derive
oscillatory property of the equation from the properties of its coefficients on the
whole half line (integral oscillatory criteria: see for example Leighton’s theorem in [16],
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Wintner’s theorem in [11], Hartman’s theorem in [10, Theorem 52], and the works of
I.V. Kamenev [8], J. Yan [17], W.-L. Liu and H.-J. Li [14], J. Deng [2], A. Elbert [4],
H.Kh. Abdullah [1], G.A. Grigorian [5]); the second one – which is radical – studies
the oscillatory behavior of equations on the finite interval (interval oscillatory criteria:
see Wong’s theorem in [10], G.A. Grigorian [5], Sturm’s theorem in [7], Q. Kong [9],
J.G. Sun, C.H. Ou and J.S.W. Wong [15], M.K. Kwong, J.S.W. Wong [12]). Then the
equation is oscillatory if it is oscillatory on the countable set of intervals. The feature of
this direction is that out of countable intervals there is no condition (except conditions
like local integrability or continuity) posed on the coefficients of the equation. Probably
this fact explains the phenomenon of the existence of oscillations; Eq. (1.1) with
extremal effect:

∫ +∞
t0

q(τ)dτ = −∞ (cf. [9]) (It is easy to construct an example of
such an effect by using the Sturm comparison theorem.) In many cases the integral
oscillatory criteria us allow to establish oscillatory behavior of linear equations easily.
Recently M.K. Kwong [11] obtained new integral criteria, describing the broad classes
of oscillatory equations in terms of q(t). We note his following result. Let

Q(t) ≡
t∫

t0

τ2q(τ)dτ and Q+(t) ≡ max{Q(t), 0}, t ≥ t0.

Theorem 1.2 ([11, Theorem 11]). Let the following conditions be satisfied:

1) for some k > 0, α > 2 and for sufficiently large T the inequality

T∫
t0

Q2
+(t)
t2

dt ≥ kTα

holds,
2) there exist δ > ε > 0 and an infinite number of intervals [sn; sn + δ] such that the

measure {t ∈ [sn; sn + δ] : Q(t) ≥ 0} ≥ ε.

Then Eq. (1.1) is oscillatory.

In this paper we prove an oscillatory criterion for Eq. (1.1). The proof is based
on the Riccati equation method. As a consequence, from this criterion is derived an
oscillatory condition for the generalized Hill’s equation. For the examples the obtained
result is compared with some known oscillatory criteria.

2. RICCATI EQUATION

Consider Riccati equation

x′(t) + x2(t) + q(t) = 0, t ≥ t0. (2.1)

Definition 2.1. A solution of Eq. (2.1) is said to be t1-regular if it exists on the
interval [t1; +∞), (t1 ≥ t0).
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Definition 2.2. The t1-regular solution x(t) of Eq. (2.1) is said to be t1-normal if there
exists δ > 0 such, that any solution x1(t) of Eq. (2.1) with x1(t1) ∈ (x(t1)−δ;x(t1)+δ)
is t1-regular. Otherwise, the solution x(t) is said to be t1-extremal.

Let R stand for the set of real numbers. Denote by reg(t1) the set of such x(0) ∈ R,
for which the solution x(t) of Eq. (2.1) with x(t1) = x(0) is t1-regular.

Lemma 2.3. If Eq. (2.1) has a t1-regular solution, then it has sole t1-extremal solution
x∗(t), and reg(t1) = [x∗(t1); +∞).

See the proof in [6].
Let x(t) be a t1-regular solution of Eq. (2.1). Consider the integral

νx(t) ≡
+∞∫
t

exp
{
−2

τ∫
t

x(s)ds
}
dτ, t ≥ t1.

Theorem 2.4 ([6, Theorem 2.A]). The integral νx(t) is convergent for each t ≥ t1 if
and only if x(t) is t1-normal.

3. OSCILLATORY CRITERION

Denote by Ω the set of positive and continuously differentiable on [t0; +∞) functions.
For any f ∈ Ω denote

Iq,f ≡
+∞∫
t0

exp
{ t∫
t0

dτ

f(τ)

τ∫
t0

[
2f(s)q(s)− 1

2
f ′(s)2

f(s)

]
ds

}
dt.

Denote

A±q,λ ≡
{
t ≥ t0 : ±

(
λ+

t∫
t0

q(τ)dτ
)
≥ 0
}
, λ ∈ R.

Theorem 3.1. For some f ∈ Ω let the following conditions be satisfied:

1) Iq,f = +∞,
2) there exists an infinitly large sequence {θn}+∞

n=1 such that

S ≡ sup
n≥1

{
1

f(θn)

θn∫
t0

[
4f(τ)q(τ)− f ′(τ)2

f(τ)

]
− 4

θn∫
t0

q(τ)dτ
}
< +∞,

and let for some λ ∈ R

3) ∫
A+
q,λ

dτ = +∞,
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4) ∫
A−
q,λ

(
λ+

τ∫
t0

q(s)ds
)2
dτ = +∞.

Then Eq. (1.1) is oscillatory.

Proof. Suppose Eq. (1.1) is not oscillatory. Then Eq. (2.1) has a t1-regular solution
for some t1 ≥ t0 (see [7, p. 332]). In Eq. (2.1) make a change

x(t) = y(t)− λ−
t∫

t0

q(τ)dτ, t ≥ t0. (3.1)

We will arrive at the equation

y′(t) + y2(t)− 2
(
λ+

t∫
t0

q(τ)dτ
)
y(t) +

(
λ+

t∫
t0

q(τ)dτ
)2

= 0, t ≥ t0. (3.2)

By virtue of Lemma 2.3, Eq. (2.1) has the t1-extremal solution x∗(t). Let y∗(t) be the

solution of Eq. (3.2) with y∗(t1) = x∗(t1)− λ−
t1∫
t0

q(τ)dτ . By virtue of (3.1), y∗(t) is

t1-regular. Let us show that

y∗(t)→ −∞ for t→ +∞. (3.3)

By virtue of (3.2), we have

y∗(t) = y∗(t1)−
t∫

t1

[
y∗(τ)− λ−

τ∫
t0

q(s)ds
]2
dτ, t ≥ t1. (3.4)

Suppose the relation (3.3) is false. Then it follows from (3.4) that y∗(t) decreases and
has a finite limit on +∞:

y∗(+∞) ≡ lim
t→+∞

y∗(t) (y∗(t) ↓ y∗(+∞) 6= −∞). (3.5)

Two cases are possible:

a) y∗(+∞) < 0, b) y∗(+∞) ≥ 0.

Let case a) hold. Then it follows from (3.5) that y∗(t) ≤ −ε, t ≥ t2, for some ε > 0
and t2 ≥ t1. From here, from condition 3) and (3.4) it follows, that y∗(t)→ −∞ for
t → +∞, which contradicts (3.5). Let case b) hold. Then from (3.5) it follows that
y∗(t) ≥ 0, t ≥ t1. From here, from the condition 4) and from (3.4) it follows that
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y∗(t)→ −∞ for t→ +∞, which again contradicts (3.5). So the relation (3.3) holds.
By condition 2) and relation (3.5) choose n = n0 so large that

y∗(θn0)− λ+ S/4 < 0, (3.6)

and put t2 ≡ θn0 . Show that the solution x0(t) of Eq. (3.1) with

x0(t2) = 1
f(t2)

t2∫
t0

[
f ′(τ)2

4f(τ) − f(τ)q(τ)
]
dτ (3.7)

is t2-normal. From (3.1) it follows

x∗(t2) = y∗(t2)− λ−
t2∫
t0

q(τ)dτ.

From this, (3.6) and (3.7) it follows that x∗(t2) < x0(t2). By virtue of Lemma 2.3, it
follows from here that x0(t) is t2-normal. By virtue of (2.1), we have

f(t)x′0(t) + f(t)x2
0(t) + f(t)q(t) = 0, t ≥ t2.

Integrating this equality from t0 to t we obtain

f(t)x0(t) +
t∫

t2

[f(τ)x2
0(τ)− f ′(τ)x0(τ)]dτ = f(t2)x0(t2)−

t∫
t2

f(τ)q(τ)dτ, t ≥ t2.

Completing the square in the left hand side of this equality and dividing both sides of
the obtained by f(t) we will come to the equality

x0(t)+ 1
f(t)

t∫
t2

f(τ)
[
x0(τ)− f

′(τ)
2f(τ)

]2
dτ = c

f(t)+ 1
f(t)

t∫
t0

[
f ′(τ)2

4f(τ) −f(τ)q(τ)
]
dτ, t ≥ t2,

(3.8)
where

c ≡ f(t2)x0(t2)−
t2∫
t0

[
f ′(τ)2

4f(τ) − f(τ)q(τ)
]
dτ.

By virtue of (3.7), c = 0. Therefore, from (3.8) we get

−2x0(t) ≥ 1
f(t)

t∫
t0

[
2f(τ)q(τ)− f ′(τ)2

2f(τ)

]
dτ, t ≥ t2.

Then

νx0(t2) ≥M
+∞∫
t2

exp
{ t∫
t0

dτ

f(τ)

τ∫
t0

[
2f(s)q(s)− f ′(s)2

2f(s)

]
ds

}
dt, (3.9)
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where

M ≡ exp
{
−

t2∫
t0

dτ

f(τ)

τ∫
t0

[
2f(s)q(s)− f ′(s)2

2f(s)

]
ds

}
.

Since x0(t) is t2-normal by virtue of Theorem 2.4 the left hand side of inequality (3.9)
is finite, whereas from condition 1) it follows that its right hand side is equal to +∞.
The obtained contradiction proves the theorem.

Remark 3.2. For f(t) ≡ 1, condition 2) of Theorem 3.1 always holds.

Example 3.3. Consider equation

φ′′(t) +
[ n∑
k=1

ak
cos(λktαk)

tβk

]
φ(t) = 0, t ≥ t0 > 0, (3.10)

where ak, λk, αk, βk, k = 1, n are some constants, a1 6= 0, λk 6= 0, αk > 0, k = 1, n,
α1 ≤ 1, α1 + β1 ≤ 3/2, α1 + β1 < αk + βk, k = 2, n. We have

t∫
t0

[ n∑
k=1

ak
cos(λkταk)

τβk

]
dτ

=
n∑
k=1

[
ak
λk

sin(λktαk)
tαk+βk−1 + (1− αk − βk)ak

λk

+∞∫
t

sin(λkταk)
ταk+βk−2 dτ

]
+ c0(t0), t ≥ t0,

(3.11)

where

c0(t0) ≡
n∑
k=1

[
ak
λk

sin(λktαk0 )
tαk+βk−1
0

dτ + (1− αk − βk)ak
λk

+∞∫
t0

sin(λkταk)
ταk+βk−2dτ

]
.

It is not difficult to see that

c0(t0) = a1

λ1t
α1+β1−1
0

[
sin(λ1t

α1
0 ) + o(1)

]
for t0 → +∞.

Therefore, without loss of generality we will assume that c0(t0) = 0, t0 > 0. Then from
(3.11) we get

t∫
t0

[ n∑
k=1

ak
cos(λταk)

τβk

]
dτ = a1

λ1t
α1+β1−1
0

[
sin(λ1t

α1
0 ) + o(1)

]
for t→ +∞.

Hence it is clear that for λ = 0 that conditions 3) and 4) of Theorem 3.1 are fulfilled.
From (3.11) we derive

t∫
t0

dτ

τ∫
t0

[ n∑
k=1

ak
cos(λsαk)

sβk

]
ds = − a1

λ2
1t
α1+β1−2

[
cos(λ1t

α1) + c1(t)
]

+ c2(t),
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where

c1(t) ≡ λ2
1
a1

n∑
k=1

ak
λ2
k

cos(λktαk)
tαk+βk−α1−β1

= o(1),

and

c2(t) ≡
n∑
k=1

(1− αk − βk)ak
λk

t∫
t0

dτ

+∞∫
τ

sin(λksαk)
sαk+βk−2 ds = O(1)

for t→ +∞. Then assuming f(t) ≡ 1 and taking into account Remark 3.2 we conclude
that for Eq. (3.10) conditions 1) and 2) of Theorem 3.1 are fulfilled. Therefore,
Eq. (3.10) is oscillatory.

Let H1(t) and H2(t) be real continuous and periodic functions on [t0; +∞) with
periods T1 and T2, correspondingly, and let T1/T2 be irrational. Denote H(t) ≡
H1(t) +H2(t), t ≥ t0. Consider generalized Hill’s equation

φ′′(t) +H(t)φ(t) = 0, t ≥ t0. (3.12)

Corollary 3.4. If

1
T1

t0+T1∫
t0

H1(τ)dτ + 1
T2

t0+T2∫
t0

H2(τ)dτ ≥ 0,

then Eq. (3.12) is oscillatory.

Proof. We prove only for the case

t0+Tk∫
t0

Hk(τ)dτ = 0, k = 1, 2. (3.13)

The proof in the general case can be derived from the realized proof by using the
Sturm comparison criterion (see [7, p. 334]). Denote

hk(t) ≡
t∫

t0

Hk(τ)dτ, t ≥ t0, k = 1, 2.

It is easy to derive from (3.13) that hk(t) is a periodic function of period Tk (k = 1, 2).
Denote

hk ≡
1
Tk

t0+Tk∫
t0

hk(τ)dτ, k = 1, 2.

Then
hk(t) = hk + h0

k(t), t ≥ t0, k = 1, 2, (3.14)
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where
t0+Tk∫
t0

h0
k(τ)dτ = 0, k = 1, 2. (3.15)

By virtue of the mean value theorem, the equality hk = hk(ξk) holds for some
ξk ∈ [t0; t0 + Tk] (k = 1, 2). Then since

hk(t) = hk(ξk) +
t∫

ξk

Hk(τ)dτ, t ≥ t0, k = 1, 2,

we deduce from (3.14) and (3.15) that

h0
k(t) =

t∫
ξk+nTk

Hk(τ)dτ, t ≥ t0, k = 1, 2, (3.16)

for a fixed n ∈ {1, 2, . . .}. Evidently,

min
t∈[t0;t0+Tk]

hk(t) < hk < max
t∈[t0;t0+Tk]

hk(t), k = 1, 2.

In view of this, we assume ξ2 such that

ε(t) ≡ h2 − h2(t) ≥ 0, t ∈ [ξ2 − δ; ξ2], (3.17)

for some δ > 0. Denote
M ≡ min{M1,M2},

where
M1 ≡ max

t∈[t0;t0+T1]
h0

1(t), M2 ≡
∣∣∣ min
t∈[t0;t0+T1]

h0
1(t)

∣∣∣.
It follows from (3.15) that M > 0. Then from (3.17) we have that for enough small
value of δ > 0 the following inequalities hold:

0 ≤ ε(t) ≤ M

8 , t ∈ [ξ2 − δ; ξ2] (3.18)

(because ε(ξ2) = h2 − h2(ξ2) = 0). Since T1/T2 irrational, the set

{t0 +mT2(modT1) : m = 1, 2, . . .}

is everywhere dense in [t0; t0 + T1]. In view of this, we choose the natural numbers n0
and m0 such that

0 < ξ2 +m0T2 − ξ1 − n0T1 < δ (3.19)
and put t1 = ξ1 + n0T1. Denote

gk(t) ≡
t∫

t1

Hk(τ)dτ, t ≥ t1, k = 1, 2.
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From (3.16) we see that
g1(t) = h0

1(t), t ≥ t1. (3.20)
It is evident that

g2(t) = g2 + h0
2(t), t ≥ t1, (3.21)

where
g2 = h2(ξ2 +m0T2)− h2(ξ1 + n0T1).

From (3.18) and (3.19) it follows that

0 ≤ g2 ≤
M

8 . (3.22)

Consider the functions

Fk(t) ≡
t∫

t1

dτ

τ∫
t1

Hk(s)ds, t ≥ t1, k = 1, 2.

We have

Fk(t) =
t∫

t1

gk(τ)dτ, t ≥ t1, k = 1, 2.

Then from (3.15) and (3.20) it follows that F1(t) is a periodic function, and from (3.15)
and (3.21) that F2(t) = g2t+ F 0

2 (t), t ≥ t1, where F 0
2 (t) is a periodic function. From

here and from (3.22) it follows that for f(t) ≡ 1 conditions 1) and 2) of Theorem 3.1
are fulfilled. Let η+(η−) be a maximum (minimum) point of the function h0

1(t) on
[t1; t1 + T1], and let h2(η0) = 0 for some η0 ∈ [t1; t1 + T2]. Choose ∆ > 0 so small that
∆ ≤ δ,

h1(t) ≥ h0
1(η+)

2 , |t− η+| ≤ ∆, (3.23)

h1(t) ≥ h0
1(η−)

2 , |t− η−| ≤ ∆, (3.24)

|h0
2(t)| ≤ M

8 , |t− η0| ≤ ∆. (3.25)

Since the set {t1 +mT2(modT1) : m = 1, 2, . . .} is everywhere dense in [t1; t1 + T1], we
can choose the sequences of natural numbers {n±k }

+∞
k=1 and {m±k }

+∞
k=1 such that

|n±k T1 + η± −m±k T2 − η0| < ∆, k = 1, 2, . . . .

Then (3.23) and (3.25) imply that

h(t) ≡ h1(t) + h2(t) ≥ 0, t ∈ [n+
k + η+ −∆;n+

k + η+ + ∆],

and from (3.24) and (3.25) we get

h(t) ≤ h1(η−)
4 , t ∈ [n−k + η− −∆;n−k + η− + ∆], k = 1, 2, . . . .
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Therefore, for λ = 0 conditions 3) and 4) of Theorem (3.1) are fulfilled. So we showed
that for Eq. (3.12) all conditions of Theorem (3.1) are fulfilled. Therefore, Eq. (3.12)
is oscillatory. The proof is complete.

Remark 3.5. The condition of Corollary 3.4 is simpler than the condition of
Coppel’s theorem [10, Theorem 56] (in the sense that for the calculation of
limt→+∞

1
t

∫ t
a+tH(τ)dτ for sure we use the quantities 1

Tk

∫ t0+Tk
t0

Hk(τ)dτ , k = 1, 2,
and we need not prove the uniform convergence of limt→+∞

1
t

∫ t
a+tH(τ)dτ).

Let H0(t) be a continuous real function on [t0; +∞) such that the integral∫ +∞
t0

H0(τ)dτ is convergent.

Remark 3.6. Slightly changing the proof of Corollary 3.4 it can be shown that the
equation

φ′′(t) + [H(t) +H0(t)]φ(t) = 0, t ≥ t0,

is oscillatory if H(t) satisfies the condition of Corollary 3.4.

Example 3.7. The equation

φ′′(t)+[a+a1 cos(λ1t+ω1)+a2 cos(λ2t+ω2)+
n∑
k=1

bkt
αk cos(µktβk)]φ(t) = 0, t ≥ t0 > 0,

(3.26)
where a, aj , λj , ωj(j = 1, 2), bk, αk, µk, βk(k = 1, n) are some constants, ajλj 6= 0,
j = 1, 2, µk 6= 0, k = 1, n, λ1/λ2 6= n/m, n,m ∈ Z, for a ≥ 0, and αk − βk + 1 < 0,
k = 1, n is oscillatory.

Example 3.8. Consider equation

φ′′(t) +
[
µ

t2
+ γ

cos(
√
t)

t

]
φ(t) = 0, t ≥ t0 > 0, µ ≥ 1

4 , γ ∈ R. (3.27)

Take f(t) = t, t ≥ t0. We have

2
t∫

t0

cos
√
sds = 2

√
t sin
√
t− 2

√
t0 sin

√
t0 +

+∞∫
t0

sin
√
s√

s
ds, t ≥ t0. (3.28)

Without loss of generality we choose t0 > 0 such that

2
√
t0 sin

√
t0 =

+∞∫
t0

sin
√
s√

s
ds

This is possible for

2
√
t0 sin

√
t0 −

+∞∫
t0

sin
√
s√

s
ds = 2

√
t0(sin

√
t0 + o(1)) for t0 → +∞.
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Then using (3.28) it is easy to show that conditions 1) and 2) of Theorem 3.1
for Eq. (3.27) are fulfilled. It is easy to show that

t∫
t0

[
µ

τ2 − γ
cos
√
τ

τ

]
dτ

= µ

t0
+ γ

+∞∫
t0

sin
√
τ

τ
√
τ
dτ − 2γ√

t0
sin
√
t0 + 2γ√

t
sin
√
t− µ

t
− γ

+∞∫
t

sin
√
τ

τ
√
τ
dτ, t ≥ t0,

µ

t
+ γ

+∞∫
t

sin
√
τ

τ
√
τ
dτ = O

(1
t

)

for t→ +∞ (therefore
+∞∫
t0

[
µ
t + γ

+∞∫
t

sin
√
τ

τ
√
τ
dτ
]2
dt < +∞). Using these relations and

taking

λ = 2γ√
t0

sin
√
t0 −

µ

t0
− γ

+∞∫
t

sin
√
τ

τ
√
τ
dτ

one can readily show that conditions 3) and 4) of Theorem 3.1 for Eq. (3.27) are
fulfilled too. Therefore, Eq. (3.27) is oscillatory.

In the above examples the function q(t) has at most power growth on +∞. Now
we give an example of oscillatory Eq. (1.1) with exponential growth of q(t) on +∞.

Example 3.9. Consider equation

φ′′(t) + e2t cos(et)φ(t) = 0, t ≥ t0. (3.29)

Without loss of generality we assume that et0 = ctg(et0). Then

t∫
t0

q(τ)dτ ≡
t∫

t0

e2τ cos(eτ )dτ = et sin(et) + cos(et), t ≥ t0. (3.30)

It follows from here that for enough large integers k the following inequalities are
fulfilled:

t∫
t0

q(τ)dτ ≥ 0 for t ∈
[

ln
(

2πk + π

6

)
; ln
(

2πk + 5π
6

)]
,

t∫
t0

q(τ)dτ ≤ −1
3

(
2πk+7π

6

)
ln
[
1 +

2π
3

2πk + 7π
6

]
for t ∈

[
ln
(

2πk+13π
6

)
; ln(2πk+3π)

]
.

Therefore, when λ = 0 for Eq. (3.29) conditions 3) and 4) of Theorem 3.1 are fulfilled.
By integrating (3.30) from t0 to t it is easy to verify that for f(t) ≡ 1 conditions
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1) and 2) of Theorem 3.1 are fulfilled. So all conditions of Theorem 3.1 for Eq. (3.29)
are satisfied. Therefore, Eq. (3.29) is oscillatory.

It is not difficult to verify that the oscillatory criteria of Ph. Hartman
[7, Theorem 52] and I.V. Kamenev [8] are not applicable to equations (3.10), (3.26),
(3.27) and (3.29). Theorem 1 of M.K. Kwong is not applicable to Eq. (3.10) for
α1 + β1 ≥ 1

2 , as well as to Eq. (3.27). Although for β1 − α1 > 0 the coefficient q(t) in
Eq. (3.10) is integrable, even in this case the criterion of J. Deng [2, Theorem 1] is not
applicable to Eq. (3.10). The last one is not applicable to Eq. (3.27) too. The question
of the applicability of the criteria of J.S.W. Wong [10, Theorem 1], Y.C. Sun, C.H.
Ou and J.S.W. Wong [15, Corollaries 1-3], J. Yan [17, Theorem 1], W.-L. Liu and
H.-J. Li [14, Theorems 1 and 2], A. Elbert [4, Theorem 2], Z. Zheng [18, Theorem 2],
H.Kh. Abdullah [1, Theorem 2] to the equations (3.10) and (3.26) remains open. It
also remains open the following question: which parameter function g(t) should be
selected (for each individual case), for proving the oscillation of equations (3.10), (3.26)
and (3.29) by using the Hauptsatz’s test [3, Theorem 1]?
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