PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dimensional accuracy and surface roughness of polymeric dental bridges produced by different 3D printing processes

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: To compare the dimensions accuracy and surface roughness of polymeric dental bridges produced by different 3D printers. Design/methodology/approach: Four-part dental bridges were manufactured by three printing systems working on the basis of digital light projection (DLP) stereolithography (SLA), laser-assisted SLA and fused deposition modeling (FDM). The materials used from SLA printers are liquid methacrylate photopolymer resins, while FDM printer use thin wire plastic polylactic acid. The accuracy of the external dimensions of dental bridges was evaluated and the surface roughness was measured. Findings: It was found that compared to the base model, the dimensions of the SLA printed bridges are bigger with 1.25%-6.21%, while the corresponding dimensions of the samples, made by FDM are smaller by 1.07%-4.71%, regardless the position of the object towards the substrate. The samples, produced by FDM, are characterized with the highest roughness. The average roughness deviation (Ra) values for DLP SLA and lase-assisted SLA are 2.40 pm and 2.97 pm, respectively. Research limitations/implications: For production of high quality polymeric dental constructions next research should be targeted to investigation of the polymerization degree, stresses and deformations. Practical implications: Our study shows that 3D printers, based on laser-assisted and DLP SLA, can be successfully used for manufacturing of polymeric dental bridges - temporary restorations or cast patterns, while FDM system is more suitable for training models. The results will help the dentists to make right choice of the most suitable 3D printer. Originality/value: One of the largest fixed partial dentures - four-part bridges, produced by three different commercial 3D printing systems, were investigated by comparative analysis. The paper will attract readers’ interest in the field of biomedical materials and application of new technologies in dentistry.
Rocznik
Strony
65--75
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
autor
  • Faculty of Dental Medicine, Medical University of Varna, 84 Tsar Osvoboditel Blvd, 9000 Varna, Bulgaria
  • Faculty of Dental Medicine, Medical University of Varna, 84 Tsar Osvoboditel Blvd, 9000 Varna, Bulgaria
autor
  • Laboratory of Computer Simulations in Medicine, Technical University of Varna, 1 Studentska Str, 9010 Varna, Bulgaria
  • Laboratory of Computer Simulations in Medicine, Technical University of Varna, 1 Studentska Str, 9010 Varna, Bulgaria
Bibliografia
  • [1] R. van Noort, The future of dental devices is digital, Dental Materials 28/1 (2012) 3-12, DOI: 10.1016/ j.dental.2011.10.014.
  • [2] J. Sun, F.Q. Zhang, The application of rapid prototyping in prosthodontics, Journal of Prostho- dontics 21/8 (2012) 641-644, DOI: 10.11U/j.l532- 849X.2012.00888.X.
  • [3] K. Torabi, E. Farjood, S. Hamedani, Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature, Journal of Dentistry 16/1 (2015) 1-9.
  • [4] I. Katreva, T. Dikova, M. Abadzhiev, T. Tonchev, D. Dzhendov, M. Simov, S. Angelova, D. Pavlova, M. Doychinova, 3D-printing in contemporary prosthodontic treatment, Scripta Scientifica Medicinae Dentalis 2/1 (2016) 7-11.
  • [5] J.Y. Jeng, K.Y. Chang, D.R. Dong, H.S. Shin, Rapid Prototyp Journal 6 (2002) 10.
  • [6] R. Bibb, D. Eggbeer, A. Paterson, Medical modelling: the application of advanced design and rapid prototyping techniques in medicine, Second Edition, Woodhead Publishing, Oxford, 2015.
  • [7] R. Bibb, D. Eggbeer, R. Williams, Rapid manufacture of removable partial denture frameworks, Rapid Prototyping Journal 12/2 (2006) 95-99, DOI: https://doi.org/10.U08/13552540610652438.
  • [8] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, The new generation of the biologicalengineering materials for applications in medical and dental implant-scaffolds, Archives of MaterialsScience and Engineering 91/2 (2018) 56-85, DOI: 10.560/01.3001.0012.5490.
  • [9] L.A. Dobrzański, A.D. Dobrzańska-Danikiewicz, Z.P. Czuba, L.B. Dobrzański, A. Achtelik-Franczak, P. Malara, M. Szindler, L. Kroll, Metallic skeletons as reinforcement of new composite materials applied in orthopaedics and dentistry, Archives of Materials Science and Engineering 92/2 (2018) 53-85, DOI: 10.5604/01.3001.0012.6585.
  • [10] T. Dikova, D. Dzhendov, M. Simov, I. Katreva- Bozukova, S. Angelova, D. Pavlova, M. Abadzhiev, T. Tonchev, Modem Trends in the Development of the Technologies for Production of Dental Constructions, Journal of IMAB 21/4 (2015) 974-981, DOI: http://dx.doi.org/10.5272/jimab.2015214.974.
  • [11] M. Kasparova, L. Grafova, P. Dvorak, T. Dostalova, A. Prochazka, H. Eliasova, J. Prusa, S. Kakawand, Possibility of reconstruction of dental plaster cast from 3D digital study models, Biomedical Engineering Online 12 (2013) 49, DOI: 10.1186/1475-925X-12-49.
  • [12] A. Hazeveld, J.J.R.H. Slater, Y.J. Ren, Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques, American Journal of Orthodontics and Dentofacial Orthopedics 145/1 (2014) 108-115.
  • [13] W.N.W. Hassan, Y. Yusoff, N.A. Mardi, Comparison of reconstructed rapid prototyping models produced by 3-dimensional printing and conventional stone models with different degrees of crowding, American Journal of Orthodontics and Dentofacial Orthopedics 151/1 (2017) 209-218.
  • [14] E. Kroger, M. Dekiff, D. Dirksen, 3D printed simulation models based on real patient situations for hands-on practice, European Journal of Dental Education 21/4 (2017) ell9-el25, DOI: 10.1111/eje. 12229.
  • [15] S.W. Wang, M. Li, H. Yang, Y. Liu, Y.C. Sun, Application of computer aided design and fused deposition modeling technology in the digital manufacture of orthodontic study models, Biomedical Research-India 28/10 (2017) 4425-4431.
  • [16] C.A. Dietrich, A. Ender, S. Baumgartner, A. Mehl, A validation study of reconstructed rapid prototyping models produced by two technologies, Angle Orthodontist 87/5 (2017) 782-787, DOI: 10.2319/ 01091-727.1.
  • [17] H. Chen, H. Wang, P. Lv, Y. Wang, Y. Sun, Quantitative Evaluation of Tissue Surface Adaption of CAD- Designed and 3D Printed Wax Pattern of Maxillary Complete Denture, BioMed Research International 2015 (2015) 453968, DOI: 10.1155/2015/453968.
  • [18] L. Romero, M. Jimenez, M.D. Espinosa, M. Dominguez, New Design for Rapid Prototyping of Digital Master Casts for Multiple Dental Implant Restorations, PloS One 10 (2015) e0145253, DOI: https://doi.org/10.1371/joumal.pone.0145253.
  • [19] D. Whitley, R.S. Eidson, I. Rudek, S. Bencharit, In¬office fabrication of dental implant surgical guides using desktop stereolithographic printing and implant treatment planning software: A clinical report, Journal of Prosthetic Dentistry 118/3 (2017) 256-263, DOI: https://doi.Org/10.1016/j.prosdent.2016.10.017.
  • [20] S. Digholkar, V.N.V. Madhav, J. Palaskar, Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods, The Journal of Indian Prosthodontic Society 16/4 (2016) 328-334, DOI: 10.4103/0972-4052.191288.
  • [21] H.N. Mai, K.B. Lee, D.H. Lee, Fit of interim crowns fabricated using photopolymer-jetting 3D printing, Journal of Prosthetic Dentistry 118/2 (2017) 208-215, DOI: https://doi.Org/10.1016/j.prosdent.2016.10.030.
  • [22] T. Dikova, D. Dzhendov, I. Katreva, D. Pavlova, Accuracy of polymeric dental bridges manufactured by stereolythography, Archives of Materials Science and Engineering 78/1 (2016) 29-36, DOI: 10.5604/ 18972764.1226313.
  • [23] L. Shamseddine, R. Mortada, K. Rifai, J.J. Chidiac, Fit of pressed crowns fabricated from two CAD-CAM wax pattern process plans: A comparative in vitro study, Journal of Prosthetic Dentistry 118/1 (2017) 49¬54, DOI: 10.1016/j.prosdent.2016.10.003.
  • [24] Y. Ishida, T. Miyasaka, Dimensional accuracy of dental casting patterns created by 3D printers, Dental Materials Journal 35/2 (2016) 250-256, DOI: 10.4012/dmj.2015-278.
  • [25] R. Minev, E. Minev, Technologies for Rapid Prototyping (RP)-Basic Concepts, Quality Issues and Modem Trends, Scripta Scientifica Medicinae Dentalis 2/1 (2016) 12-22.
  • [26] K. Bliznakova, The Use of 3D Printing in Manufacturing Anthropomorphic Phantoms for Biomedical Applications, Scripta Scientifica Medicinae Dentalis 2/1 (2016) 23-31.
  • [27] M. Braian, R. Jimbo, A. Wennerberg, Production tolerance of additive manufactured polymeric objects for clinical applications, Dental Materials 32/7 (2016) 853-861.
  • [28] Y. Ide, S. Nayar, H. Logan, B. Gallagher, J. Wolfaardt, The effect of the angle of acuteness of additive manufactured models and the direction of printing on the dimensional fidelity: clinical implications, Odontology 105/1 (2017) 108-115, DOI: 10.1007/sl0266-016-0239-4.
  • [29] E. Minev, K. Popov, R. Minev, S. Dimov, V. Gagov, Grid method for accuracy study of micro parts manufacturing, Micro and Nanosystems 3/3 (2011) 263-269.
  • [30] E. Minev, K.B. Popov, R. Minev, S.S. Dimov, V. Gagov, M.S. Packianather, in: Bertrand Fillon, Chantal Khan-Malek, S. Dimov (Eds.), Proceedings of the 7th International Conference "Multi-Material Micro Manufacture", 2011, 257-260.
  • [31] T. Dikova, D. Dzhendov, I. Katreva, D. Pavlova, M. Simov, S. Angelova, M. Abadzhiev, T. Tonchev, Possibilities of 3D Printer Rapidshape D30 for Manufacturing of Cubic Sampels, Scripta Scientifica Medicinae Dentalis 2/1 (2016) 9-15.
  • [32] D.Y. Kim, J.H. Jeon, J.H. Kim, H.Y. Kim, W.C. Kim, Reproducibility of different arrangement of resin copings by dental microstereolithography: Evaluating the marginal discrepancy of resin copings, Journal of Prosthetic Dentistry 117/2 (2017) 260-265, DOI: https://doi.Org/10.1016/j.prosdent.2016.07.007.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a87b85fa-0aa8-49db-8f9b-78088ff736fe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.