Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In rough set theory, one typically considers pairs of dual entities such as a pair of lower and upper approximations, a pair of indiscernibility and discernibility relations, a pair of sets of core and non-useful attributes, and several more. By adopting a framework known as hypercubes of duality, of which the square of opposition is a special case, this paper investigates the role of duality for interpreting fundamental concepts in rough set analysis. The objective is not to introduce new concepts, but to revisit the existing concepts by casting them in a common framework so that we can obtain more insights into an understanding of these concepts and their relationships. We demonstrate that these concepts can, in fact, be defined and explained in a common framework, although they first appear to be very different and have been studied in somewhat isolated ways.
Wydawca
Czasopismo
Rocznik
Tom
Strony
49--64
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
autor
- Department of Computer Science, University of Regina, Regina, Canada.
Bibliografia
- [1] Beziau, J.Y., Jacquette, D. (Eds.): Around and Beyond the Square of Opposition, Springer, Basel, 2012.
- [2] Ciucci, D., Dubois, D., Prade, H.: Oppositions in rough set theory, in: Li, T.R., Nguyen, H.S., Wang, G.Y., Grzymala-Busse, J., Janicki, R., Hassanien, A. E., Yu, H. (Eds.), Proceedings ofRSKT2012, LNCS (LNAI), vol. 7414, Springer, Heidelberg, pp. 504-513,2012.
- [3] Dubois, D., Prade, H.: From Blanche hexagonal organization of concepts to formal concept analysis and possibility theory, Logica Universalis, 6, 149-169, 2012.
- [4] Gediga, G., Duntsch, I.: Modal-style operators in qualitative data analysis, in: Proceedings of the 2002 IEEE International Conference on Data Mining, pp. 155-162, 2002.
- [5] Gowers, T.: III.19 Duality, in: Gowers, T., Barrow-Green, J., Leader, I. (Eds.), The Princeton Companion to Mathematics, Princeton University Press, Princeton, pp. 187-190,2008.
- [6] Jarvinen, J.: Pawlak’s information systems in terms of Galois connections and functional dependencies, Fundamenta Informaticae, 75, 315-330, 2007.
- [7] Jarvinen, J.: Lattice theory for rough sets, LNCS Transactions on Rough Sets, VI, LNCS, vol. 4374, 400-498, 2007.
- [8] Li, H.R., Wei, P., Song, X.X.: Construction of concept lattices based on indiscernibility matrices, in: Lang, J., Lin, F., Wang, J. (Eds.), Proceedings of KSEM2006, LNCS (LNAI), vol. 4092, Springer, Heidelberg, pp. 229-240, 2006.
- [9] Libert, T.: Hypercubes of duality, in: Beziau, J.Y., Jacquette, D. (Eds.), Around and Beyond the Square of Opposition, Springer, Basel, pp. 293-301, 2012.
- [10] Ma, J.M., Zhang, W.X., Leung, Y., Song, X.X.: Granular computing and dual Galois connection, Information Sciences, 177, 5365-5377, 2007.
- [11] Marek, V.W.: Characterizing Pawlak’s approximation operators, LNCS Transactions on Rough Sets, VI, LNCS, vol. 4400, 140-150, 2007.
- [12] Nguyen, L.G., Nguyen, H.S.: On elimination of redundant attributes in decision tables, in: Proceedings of the Federated Conference on Computer Science and Information Systems, pp. 317-322, 2012.
- [13] Orłowska, W.: Information algebras, in: Alagar, V.S., Nivat, M. (Eds.), Proceedings of AMAST 1995, LNCS, vol. 936, Springer, Heidelberg, pp. 50-65, 1995.
- [14] Orłowska, W.: Introduction: What you always wanted to know about rough sets, in: Orłowska, W. (Ed.), Incomplete Information: Rough Set Analysis, Physica-Verlag, Heidelberg, pp. 1-20, 1998.
- [15] Orłowska, E., Radzikowska, A.M.: Knowledge algebras and their discrete duality, in: Skowron, A., Zbigniew, S. (Eds.), Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam, Springer, Heidelberg, pp. 7-20, 2012.
- [16] Pagliani, P., Chakraborty, M.: A Geometry of Approximation, Rough Set Theory: Logic, Algebra and Topology of Conceptual Patterns, Springer, Heidelberg, 2008.
- [17] Parsons, T.: The traditional square of opposition, Stanford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/square/(accessed January 3, 2013).
- [18] Pawlak, Z.: Rough sets, International Journal of Computer and Information Sciences, 11, 341-356, 1982.
- [19] Pawlak, Z.: Rough Sets, Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dordrecht, 1991.
- [20] Pawlak, Z. and Skowron, A.: Rudiments of rough sets, Information Sciences, 177, 3-27, 2007.
- [21] Pawlak, Z. and Skowron, A.: Rough sets: some extensions, Information Sciences, 177, 28-40, 2007.
- [22] Pomykała, J.M.: Approximation operators in approximation space, Bulletin of the Polish Academy of Science, Mathematics, 35, 653-662, 1987.
- [23] Restrepo, M., Cornelis, C., Gómez, J.: Duality, conjugacy and adjointness of approximation operators in covering based rough sets, International Journal of Approximate Reasoning, to appear.
- [24] Skowron, A., Rauszer, C.: The discernibility matrices and functions in information systems, in: Słowinski, R. (Ed.), Intelligent Decision Support, Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Dordrecht, pp. 331-362,1992.
- [25] Strąkowski, T., Rybinski, H.: A new approach to distributed algorithms for reduct calculation, LNCS Transactions on Rough Sets, IX, LNCS, vol. 5390, 365-378, 2008.
- [26] Yao, Y.Y.: Two views of the theory of rough sets in finite universes, International Journal of Approximate Reasoning, 15, 291-317, 1996.
- [27] Yao, Y Y: Relational interpretations of neighborhood operators and rough set approximation operators, Information Sciences, 101, 239-259, 1998.
- [28] Yao, Y.Y.: A comparative study of formal concept analysis and rough set theory in data analysis, in: Tsumoto, S., Słowinski, R., Komorowski, J., Grzymala-Busse, J.W. (Eds.), Proceedings of RSCTC 2004, LNCS (LNAI), vol. 3066, Springer, Heidelberg, pp. 59-68,2004.
- [29] Yao, Y Y: A note on definability and approximations, LNCS Transactions on Rough Sets, VII, LNCS, vol. 4400, 274-282, 2007.
- [30] Yao, Y.Y.: Three-way decisions with probabilistic rough sets, Information Sciences, 180, 341-353, 2010.
- [31] Yao, Y.Y.: The superiority of three-way decisions in probabilistic rough set models, Information Sciences, 181, 1080-1096, 2011.
- [32] Yao, Y.Y.: An outline of a theory of three-way decisions, in: Yao, J., Yang, Y, Słowinski, R., Greco, S., Li, H., Mitra, S., Polkowski, L. (Eds.), Proceedings of RSCTC 2012, LNCS (LNAI), vol. 7413, Springer, Heidelberg, pp. 1-17, 2012.
- [33] Yao, Y.Y., Yao, B.X.: Covering based rough set approximations, Information Sciences, 200, 91-107, 2012.
- [34] Zhao, Y., Yao, Y.Y, Luo, F.: Data analysis based on discernibility and indiscernibility, Information Sciences, 177, 4959-4976, 2007.
- [35] Zhu, W.: Dualities in covering rough operations, Journal of Nanchang Institute of Technology, 25, 56-59, 2006.
- [36] Zhu, W.: Topological approaches to covering rough sets, Information Sciences, 177, 1499-1508, 2007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8737f6e-79ea-4480-84ad-761310c9c918