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Abstract 
 
Statistical Process Control (SPC) based on the well known Shewhart control charts, is widely used in contemporary manufacturing 
industry, including many foundries. However, the classic SPC methods require that the measured quantities, e.g. process or product 
parameters, are not auto-correlated, i.e. their current values do not depend on the preceding ones. For the processes which do not obey this 
assumption the Special Cause Control (SCC) charts were proposed, utilizing the residual data obtained from the time-series analysis. In the 
present paper the results of application of SCC charts to a green sand processing system are presented. The tests, made on real industrial 
data collected in a big iron foundry, were aimed at the comparison of occurrences of out-of-control signals detected in the original data 
with those appeared in the residual data. It was found that application of the SCC charts reduces numbers of the signals in almost all cases 
It is concluded that it can be helpful in avoiding false signals, i.e. resulting from predictable factors.  
 
Keywords: Quality management, Application of information technology to the foundry industry, Statistical process control, Time series 
analysis, Special cause control charts 
 
 
 

1. Introduction 
 
In contemporary manufacturing industry the Statistical 

Process Control (SPC) based on the well known Shewhart control 
charts is widely used. The classic SPC methods assume that the 
process output can be described by statistically independent 
observations fluctuating around a constant mean and is intended 
to detect signals which represent the special (assignable) causes of 
external disturbances increasing the process variation. The main 
steps include process monitoring, detection the out-of-control 
signals, finding and eventual elimination of their causes.  

An application of traditional SPC charts requires that the 
observations are statistically independent and normally distributed 
and the standard deviation and mean of the observations should be 
stationary, i.e. independent of time. In real processes the 
measured quantities, such as process or product parameters, may 

be auto-correlated, i.e. their current values may depend on the 
preceding ones. For such processes these assumptions are violated 
which can cause appearing false out-of-control warning signals. 
To avoid such misleading situations, the so called Special Cause 
Control (SCC) charts have been proposed [1]. The idea was to use 
the time-series analysis to find the non-random components in the 
data and to apply the standard control chart procedures to the 
residuals. Several researches investigated performance of charts 
based on the residual data, in various aspects and in [2-7]. 

The classic SPC methods become commonly used also in 
foundry industry. The foundry technology covers a wide range of 
highly diversified processes, among which the green sand 
processing is one of the key issues deciding about quality of 
castings. Appropriate control methodologies and techniques are 
therefore particularly desirable for these processes. However, as 
remarked in [8], the green sand system variables are highly 
auto-correlated due to the continuous reuse of the sand, both in 
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plants using batch and continuous mullers. Therefore, the 
application of the SCC charts seems to be a advisable decision.  

In the above cited work [8], the statistical assumptions 
necessary for the traditional SPC control charts were evaluated 
using the original and residual data obtained from the green sand 
system operating in a medium-sized iron foundry (Neenah 
Foundry, USA). The properties subjected to the analysis were the 
sand permeability (conductivity) and the used sand temperature. 
The time-series analysis ARIMA type models were used to obtain 
the residual data. It was found that the residuals meet the 
assumptions necessary for SPC better than the original data.  

This paper presents a comparative analysis of the occurrences 
of the typical out-of-control signals appearing on the Shewhart 
control charts with those which appear on the SCC charts, plotted 
for selected important green sand properties.  

 
 

2. Methodology 
 
The data used for the analysis included single measurements 

of the following properties of the green molding sand obtained 
after mulling process: moisture content, permeability, 
compression strength, compactibility as well as the temperature of 
the used sand. The data were collected in a large iron foundry, 
with average frequency of 30 minutes, during a year period of 
normal production. From the whole data set, two representative 
subsets of 100 measurements of each property were selected for 
the analysis, making altogether 10 sets of the original data.  

The sequences of points, indicating the out-of-control signals, 
included the 8 standard patterns. Some of them are defined using 
the notion of the three zones above and below the chart centerline, 
typically denoted as: Zone A – the area between 2σ and 3σ above 
and below the center line; Zone B – the area between σ and 2σ, 
and Zone C – the area between the center line and σ, where σ is 
the standard deviation of the points from the centerline in a 
stationary process. In Table 1 definitions of the patterns are given. 
 
Table 1. 
Standard patterns (sequences) of points, indicating the out-of-
control signals 

Pattern 
type No. Definition 

1 1 point beyond Zone A
2 9 consecutive  points on one side of central line
3 6 points in a row steadily increasing or decreasing
4 14 points in a row alternating up and down
5 2 out of 3 points in a row in Zone A or beyond
6 4 out of 5 points in a row in Zone B or beyond

7 15 points in a row in Zone C (above and below the 
center line) 

8 8 consecutive points on both sides of the centerline 
with no points falling in zone C 

 
In the present work the standard deviation of the points from 

the centerline (σ) was calculated on the basis of the first 30 points 
for each of the 100-points series.  

MS Excel spreadsheet was programmed and used for 
automatic detection of the standard out-of-control patterns in the 

data. A screen copy of the spreadsheet’s fragment is shown in Fig. 
1. The values equal 1 in the ‘Signal start’ column indicate starting 
points of all sequences defined in the header. For example, if 
there are 10 consecutive points fulfilling the requirement for the 
Type 2 pattern, the value 1 appears two times in a row. The ‘First 
signal start’ column indicates only the first appearance of the 
pattern in the row. For the purpose of the present analysis the 
values calculated in ‘Signal start’ column were used for 
calculations of the numbers of the out-of-control pattern 
occurrences.  

The time-series analysis can be made by many different 
methods. The most popular are probably the Autoregressive 
Integrated with Moving Average models (ARIMA). An 
alternative approach was suggested in [9] and applied in the 
present authors’ earlier works [10-12]. The residual data are 
obtained from the original data by subtraction of three 
components of the time-series: the general trend (i.e. the mean’s 
trend), the variability amplitude trend and the centered periodical 
component. The details are described in [10]. 

 

Sigma

Upper 
limit of 

Zone C

Upper 
limit of 

Zone B

Upper 
limit of 

Zone A

Lower 
limit of 

Zone C

Lower 
limit of 

Zone B

Lower 
limit of 

Zone A
0,01288 0,01288 0,02576 0,03864 -0,0129 -0,0258 -0,0386

Type 2 (9 points in Zone C or beyond, on one side of central line)
Number of occurences: 11 3

Point 
No.

Deviation 
from 

mean
Signal 

start

First 
signal 

start
1 -0,01149 0 3 0 1 6 0 0 0
2 -0,00739 0 4 0 1 5 0 0 0
3 -0,00155 0 5 0 1 4 0 0 0
4 -0,00745 0 6 0 1 3 0 0 0
5 -0,0066 0 7 0 1 2 0 0 0
6 0,007497 1 8 0 0 1 0 0 0
7 0,006834 1 8 0 0 1 0 0 0
8 -0,00734 0 8 0 1 1 0 0 0
9 0,001771 1 9 1 0 0 0 1 1

10 0,022651 1 9 1 0 0 0 1 0
11 0,011731 1 8 0 0 1 0 0 0
12 0,007571 1 8 0 0 1 0 0 0
13 0,021694 1 7 0 0 2 0 0 0

Intermediate results of arythmetic and logic operations

 
Fig. 1. A fragment of the spreadsheet programmed for automatic 

finding the standard out-of-control patterns in data 
 

In the present work two different types of the mean’s trend 
function were utilized: linear and curvilinear in the form of the 3rd 
order polynomial. From all periodical components detected in the 
time-series, only the most significant was subtracted, in spite of 
its statistical significance. 

 
 

3. Results 
 

In Fig. 2 two examples of the results obtained by application 
of the above described procedure of calculation the residuals from 
the original data are presented. It can be seen, that the differences 
between the original data and the residuals may vary significantly.  

In Fig. 3 the variability of the data expressed by their standard 
deviation is shown for the three types of data sets, i.e. the original 
data and the residuals obtained by application of the two types of 
the mean’s trend. The values plotted on this graph include all the 
points expressing the standard deviations calculated for the ten 
data sets of each type (see Chapter 2). It can be seen, that the 
variability of the residual data is significantly reduced compared 
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to the original data, however, the type of the mean’s trend used 
for calculations of the residuals has no noticeable effect. 
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(b) 

Fig. 2. Transformation examples of the original data (used for 
Shewhart control charts) and residuals obtained from time-series 
analysis (used for Special Cause Control charts) for green sand 

properties: (a) moisture, (b) compactibility 
 

As remarked in Chapter 1, the data used for finding the out-
of-control signals (points’ patterns) appearing on the control 
charts should be normally distributed. Removing the 
autocorrelations from the data, i.e. replacing the original data by 
the residuals, should lead to increase of the normality. The results 
obtained in [8] confirmed this expectation for the two investigated 
green sand variables. In the present work, from among several 
available types of tests for normality in data, the following two 
widely applied tests were chosen: Kolmogorov-Smirnov (K-S) 
and Shapiro-Wilk (S-W). In the K-S test the statistic D is 
computed, which higher values indicate higher likelihood that the 
random variable underlying the data set is normally distributed. In 
the S-W test the statistic W is computed, which higher values 
denote lower likelihood of the normality. In Fig. 4 the differences 
of normality between the original and the residual data, obtained 

in the present study, are presented. Like in Fig. 3, the values 
plotted on this graph include all the points expressing the standard 
deviations calculated for the ten data sets of each type described 
in Chapter 2. It can be seen that the residual data reveal 
significantly higher normality compared to the original data. 
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Fig. 3. Changes of the data variability resulting from the 

application of time-series models for all data sets; the horizontal 
bars denote average values for each data displayed on the X- axis 
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Fig. 4. Changes of normality of all data distributions resulting 
from the application of time-series models; the horizontal bars 
denote average values for each data displayed on the X- axis 
 
The numbers of the out-of-control signals detected in all the 

original and residual data sets are plotted in Fig. 5 for all types of 
the standard patterns of points defined in Table 1. Pattern 3 (6 
points in a row steadily increasing or decreasing) has not appeared 
in either of the sets and is skipped in this illustration. Each graph 
includes several curves, each representing one of the ten trios of 
the corresponding data (original and 2 residuals), as described in 
Chapter 2 (2 subsets for each of the five sand properties). It can be 
seen that in most of the cases the number of the out-of-control 
signals appearing on the both SCC charts is smaller than those 
observed on the corresponding Shewhart chart. The SCC charts 
for residuals obtained assuming the curvilinear mean’s trend 
usually exhibit less out-of-control signals compared to those 
assuming linear trend.  
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Fig. 5. Numbers of the out-of-control signals detected on traditional Shewhart charts and SCC charts obtained from the time-series models 
using two types of the mean’s trend. The dotted lines indicate the cases in which one or both residuals exhibit larger number of the out-of-

control signals than the corresponding original data 
 

In principle, the above results are not surprising and may 
indicate that the original data exhibit some false out-of-control 
signals due to the autocorrelations which have been removed in 
the residual data.  

In some cases, the SCC charts showed more patterns 
indicating the out-of-control signals than the Shewhart charts. 
This was observed mostly for the Type 6 out-of-control signals, 

i.e. 4 out of 5 points in a row in Zone B or beyond. In Fig. 6 a 
typical situation of this kind is presented. 

The interpretation of such situations seems to be quite simple. 
The residual data may be characterized by a smaller variability, 
i.e. smaller standard deviation compared to the original data (cf. 
Fig. 3). Hence, the limits of the three zones, including inner limits 
of Zone B are narrower and exceeding them may be easier for a 
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local series of several points. This suggestion concerns also the 
Type 5 out-of-control signals for which similar situation was also 
observed. 
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Fig. 6. Illustration of the appearance of the Type 6 out-of-

control signal 6 (4 out of 5 points in a row in Zone B or beyond) 
on the SCC charts absent on the traditional Shewhart chart; the 

black triangles mark these five points 
 
 

4. Summary of results, conclusions and 
further work  
 

The numerical analysis of the foundry production data carried 
out in the present work was focused on the comparison of the 
behavior of two types of control charts: classic Shewhart charts, 
widely used in contemporary industry and the relatively new ones, 
called Special Cause Control charts. The latter are dedicated to 
detecting the out-of-control signals appearing in processes in 
which the measured variable values are not statistically 
independent, i.e. their current values depend on the preceding 
ones. These dependencies, called autocorrelations, can be 
expressed as the means’s trend, the trend of the amplitude of the 
variable fluctuations and regularities of the fluctuations, usually 
identified as periodicity or seasonality. These components of the 
variable values are calculated using the methods of the time-series 
analysis and subtracted from the original values. The residuals are 
plotted on the control chart and checked for appearance of the 
characteristic patterns of points. 

The original data used in the present study was raw, i.e. they 
were taken directly from the foundry records, without any 
information about possible autocorrelations or other regularities 
existing in them. The results of preliminary investigations, shown 
in Figs. 2, 3, and 4 suggested that some noticeable trends and 
especially periodic components were present in the original data. 
The remarkable reduction of the numbers of the out-of-control 
signals which appear on the SCC charts, i.e. utilizing the residual 
data, essentially confirms the applicability and usefulness of the 

new control charts in the SPC procedures implemented in the 
green sand processing.  

However, in the opinion of the present authors, successful 
applications of the above approach require some comments and 
possible refinements. One is the choice of the mean’s trend curve 
type, sometimes also called the general trend. The results 
presented in Fig. 5 show that the curvilinear trend often leads to 
larger reduction of the number of out-of-control signals compared 
to the linear trend. This observation is certainly not surprising, but 
the recommendation on utilization of the trend line of that kind is 
not obvious. A too flexible trend curve can reproduce some of the 
out-of-control patterns of points and this may lead to undesired 
removal of them from the data.  

Another issue related to a proper application of the SCC 
charts is the problem of statistical significance of the periodical 
(seasonal) component in the original data. This can be tested, 
using for example the Bartlett’s formula [10], however, several 
questions may arise. What significance level should be assumed 
in the tests? If several periodical components are significant 
should all of them be subtracted? How to handle the situations 
where all the periodical components are statistically insignificant? 
The present authors’ experience with the time-series analysis 
indicates [12] that consideration of statistically insignificant 
periodical components can improve the predictive capabilities of 
the time-series. Nevertheless, all these issues certainly require 
further investigations. 

The methodology used for constructing the SCC charts 
assumes subtraction of the autocorrelation components without 
analyzing their values, nature and causes. This seems to be a 
weakness of this approach since the autocorrelations appearing in 
data can be also considered as a kind of the process fault. As 
noticed in [13], a fault or problem in the process might be defined 
as a non-optimal operation, having a variety of the root causes 
such as hardware failures, a poor choice of operating targets, poor 
feedstock quality, poor controller tuning, sensor calibration errors, 
human errors etc. In the classic SPC the engineering staff make 
the decisions about the steps to take after getting results from the 
charts, including what needs to be improved and possible methods 
to improve it, based on their knowledge and experience. In our 
opinion, the procedures utilizing the SCC charts should include 
taking such actions twice, i.e. not only on the basis of the results 
from the charts but also from an analysis of the autocorrelation 
components detected in the original data.  

The comments presented in this chapter imply that although 
applications of the SCC charts can bring reasonable 
improvements in practical statistical control of manufacturing 
processes, some important issues require a future research. This 
particularly concerns utilization of the information obtained from 
transformation of the data from original to residual as well as a 
justified concluding from the SCC charts.   
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