Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Konferencja
24th Polish Conference of Chemical and Process Engineering, 13-16 June 2023, Szczecin, Poland. Guest editor: Prof. Rafał Rakoczy and 8th European Process Intensification Conference, 31.05–2.06.2023, Warsaw, Poland
Języki publikacji
Abstrakty
In the present study, peroxymonosulfate (PMS) activation was proposed for efficient photocatalytic degradation of aspartame, acesulfame, saccharin, and cyclamate – artificial sweeteners frequently present in wastewaters and surface waters worldwide. TiO2 nanosheets with exposed {0 0 1} facets were synthesised using the fluorine-free lyophilisation technique as a green concept for the synthesis and used for the photodegradation of selected sweeteners not susceptible to biodegradation. The synergetic effect of photocatalysis with the sulfate radical-based process was for the first time investigated. It was found that the studied artificial sweeteners were practically not susceptible to photolysis within 60 minutes of irradiation. In the presence of 2D titanium (IV) oxide, the artificial sweeteners were degraded entirely in less than 30 min, whereas the addition of peroxymonosulfate resulted in complete degradation after 10–15 minutes of the process.
Rocznik
Tom
Strony
art. no. e21
Opis fizyczny
Bibliogr. 25 poz., tab., wykr.
Twórcy
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology, Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
- 1. Basson A.R., Rodriguez-Palacios A., Cominelli F., 2021. Artificial sweeteners: History and new concepts on inflammation. Front. Nutr., 8, 746247. DOI: 10.3389/fnut.2021.746247.
- 2. Cong W., Wang R., Cai H., Daimon C. M., Scheibye-Knudsen M., Bohr V.A., Turkin R., Wood III W.H., Becker K.G., Moaddel R., Maudsley S., Martin B., 2013. Long-term artificial sweetener acesulfame potassium treatment alters neurometabolic functions in C57BL/6J mice. PLoS ONE, 8, e70257. DOI: 10.1371/journal.pone.0070257.
- 3. Erbaş O., Erdoğan M.A., Khalilnezhad A., Solmaz V., Gürkan F.T., Yiğittürk G., Eroglu H.A., Taskiran D., 2018. Evaluation of long-term effects of artificial sweeteners on rat brain: a biochemical, behavioral, and histological study. J. Biochem. Mol. Toxicol., 32, e22053. DOI: 10.1002/jbt.22053.
- 4. Jia W., Ling Y., Lin Y., Chang J., Chu X., 2014. Analysis of additives in dairy products by liquid chromatography coupled to quadrupole-orbitrap mass spectrometry. J. Chromatogr. A, 1336, 67–75. DOI: 10.1016/j.chroma.2014.02.028.
- 5. Khan M.M., Ansari S.A., Pradhan D., Ansari M.O., Han D.H., Lee J., Cho M.H., 2014. Bandgap engineered TiO2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J. Mater. Chem. A., 2, 637–644. DOI: 10.1039/c3ta14052k.
- 6. Kokotou M.G., Asimakopoulos A.G., Thomaidis N.S., 2012. Artificial sweeteners as emerging pollutants in the environment: analytical methodologies and environmental impact. Anal. Methods, 4, 3057. DOI: 10.1039/c2ay05950a.
- 7. Malinowska I., Kubica P., Madajski P., Ostrowski A., Gómez Polo C., Carvera L., Bednarski W., Zielińska-Jurek A., 2023. Synthesis, characterisation, and application of 2D/2D TiO2-GO-ZnFe2O4 obtained by the fluorine-free lyophilisation method for solar light-driven photocatalytic degradation of ibuprofen. Environ. Sci. Pollut. Res., 30, 35929–35944. DOI: 10.1007/s11356-022-24587-0.
- 8. Naik A.Q., Zafar T., Shrivastava V.K., 2021. Environmental im- pact of the presence, distribution, and use of artificial sweeteners as emerging sources of pollution. J. Environ. Public Health, 2021, 6624569. DOI: 10.1155/2021/6624569.
- 9. Oser B.L., Carson S., Cox G.E., Vogin E.E., Sternberg S.S., 1975. Chronic toxicity study of cyclamate: Saccharin (10 :1) in rats. Toxicology, 4, 385–386. DOI: 10.1016/0300-483x(75)90054-2.
- 10. Perkola N., Vaalgamaa S., Jernberg J., Vähätalo A.V., 2016. Degradation of artificial sweeteners via direct and indirect photochemical reactions. Environ. Sci. Pollut. Res., 23, 13288–13297. DOI: 10.1007/s11356-016-6489-4.
- 11. Praveena S.M., Cheema M.S., Guo H.-R., 2019. Non-nutritive artificial sweeteners as an emerging contaminant in environment: A global review and risks perspectives. Ecotoxicol. Environ. Saf., 170, 699–707. DOI: 10.1016/j.ecoenv.2018.12.048.
- 12. Renwick A.G., Thompson J.P., O’Shaughnessy M., Walter E.J., 2004. The metabolism of cyclamate to cyclohexylamine in humans during long-term administration. Toxicol. Appl. Pharmacol., 196, 367-80. DOI: 10.1016/j.taap.2004.01.013.
- 13. Rodríguez-Chueca J., Alonso E., Singh D.N., 2019. Photocatalytic mechanisms for peroxymonosulfate activation through the removal of methylene blue: A case study. Int. J. Environ. Res. Public Health, 16, 198. DOI: 10.3390/ijerph16020198.
- 14. Sakai N., Ebina Y., Takada K., Sasaki T., 2004. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies. J. Am. Chem. Soc., 126, 5851–5858. DOI: 10.1021/ja0394582.
- 15. Sang Z., Jiang Y., Tsoi Y.-K., Leung K.S.-Y., 2014. Evaluating the environmental impact of artificial sweeteners: A study of their distributions, photodegradation and toxicities. Water Res., 52, 260–274. DOI: 10.1016/j.watres.2013.11.002.
- 16. Shao Y., Pang Z., Wang L., Liu X., 2019. Efficient degradtion of acesulfame by ozone/peroxymonosulfate advanced oxidation process. Molecules, 24, 2874. DOI: 10.3390/molecules 24162874.
- 17. Toth J.E., Rickman K.A., Venter A.R., Kiddle J.J., Mezyk S.P., 2012. Reaction kinetics and efficiencies for the hydroxyl and sulfate radical based oxidation of artificial sweeteners in water. J. Phys. Chem. A., 16, 9819–9824. DOI: 10.1021/jp3047246.
- 18. Wacławek S., Lutze H.V., Grübel K., Padil V.V.T., Černík M., Dionysiou D.D., 2017. Chemistry of persulfates in water and wastewater treatment: A review. Chem. Eng. J., 330, 44–62. DOI: 10.1016/j.cej.2017.07.132.
- 19. Wang C., Kim J., Malgras V., Na J., Lin J., You J., Zhang M., Li J., Yamauchi Y., 2019a. Metal-organic frameworks and their derived materials: Emerging catalysts for a sulfate radicals-based advanced oxidation process in water purification. Small, 15, 1900744. DOI: 10.1002/smll.201900744
- 20. Wang Z., Thuy G.N.S.T., Srivastava V., Ambat I., Sillanpää M., 2019b. Photocatalytic degradation of an artificial sweetener (Acesulfame-K) from synthetic wastewater under UV-LED controlled illumination. Process Saf. Environ. Prot., 123, 206-214. DOI: 10.1016/j.psep.2019.01.018.
- 21. Xu Y., Lin Z., Wang Y., Zhang H., 2017. The UV/ peroxymono- sulfate process for the mineralisation of artificial sweetener sucralose. Chem. Eng. J., 317, 561–569. DOI: 10.1016/j.cej.2017.02.058.
- 22. Xue H., Gao S., Li M., Wang Y., Liu B., 2020. Performance of ultraviolet/persulfate process in degrading artificial sweetener acesulfame. Environ. Res., 188, 109804. DOI: 10.1016/j.envres.2020.109804.
- 23. Yang J., Zhu M., Dionysiou D.D., 2021. What is the role of light in persulfate-based advanced oxidation for water treatment? Water Res., 189, 116627. DOI: 10.1016/j.watres.2020. 116627.
- 24. Zelinski D.W., dos Santos T.P.M., Takashina T.A., Leifeld V., Igarashi-Mafra L., 2018. Photocatalytic degradation of emerging contaminants: Artificial sweeteners. Water Air Soil Pollut., 229, 207. DOI: 10.1007/s11270-018-3856-4.
- 25. Zhong M., Wang T., Zhao W., Huang J., Wang B., Blaney L., Bu Q., Yu G., 2022. Emerging organic contaminants in chinese surface water: Identification of priority pollutants. Engineering, 11, 111-125. DOI: 10.1016/j.eng.2020.12.023
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a871b550-daa4-41f1-934a-8e863381f9fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.