PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research the effect of the fractional number slots of pole on wind turbine generation using the enhanced spotted hyena optimization algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wpływu ułamkowej liczby szczelin biegunów na generację turbiny wiatrowej przy użyciu ulepszonego algorytmu optymalizacjicętkowanej hieny
Języki publikacji
EN
Abstrakty
EN
The design of machines with permanent magnets is actively developing day by day and is often used in wind energy. The main advantages of such variable speed drives are high efficiency, high power density and torque density. When designing a wind generator with two rotors and permanent magnets, it is necessary to solve such a problem as the correct choice of the number of poles and slots to increase efficiency and minimize the cost of the machine. In this work, an improved spotted hyena optimization algorithm is used to obtain the optimal combination of slots and poles. This optimization algorithm makes it possible to obtain the number of fractional slots per pole and evaluate the operating efficiency of a wind generator with a double rotor and ferrite magnets. At the first stage of machine design, various combinations of slots are installed. Next, the optimal combination is selected from various slot-pole combinations, taking into account the Enhanced Spotted Hyena Optimization (ESHO) algorithm, in which a multiobjective function is configured. Accordingly, the multi-objectives are the integration of reverse electromotive force, output torque, gear torque, flux linkage, torque ripple along with losses. Analysis of the results obtained shows that the proposed algorithm for determining the optimal slot combination is more efficient than other slot combinations. It has also been found that the choice of slot and pole combination is critical to the efficient operation of permanent magnet machines.
PL
Projektowanie maszyn z magnesami trwałymi aktywnie rozwija się z dnia na dzień i jest często wykorzystywane w energetyce wiatrowej. Głównymi zaletami takich napędów o zmiennej prędkości są wysoka sprawność, wysoka gęstość mocy i gęstość momentu obrotowego. Podczas projektowania generatora wiatrowego z dwoma wirnikami i magnesami trwałymi konieczne jest rozwiązanie takiego problemu, jak prawidłowy dobór liczby biegunów i szczelin w celu zwiększenia wydajności i zminimalizowania kosztów maszyny. W niniejszej pracy zastosowano ulepszony algorytm optymalizacji hieny plamistej w celu uzyskania optymalnej kombinacji szczelin i biegunów. Ten algorytm optymalizacji umożliwia uzyskanie liczby ułamkowych szczelin na biegun i ocenę wydajności operacyjnej generatora wiatrowego z podwójnym wirnikiem i magnesami ferrytowymi. Na pierwszym etapie projektowania maszyny instalowane są różne kombinacje szczelin. Następnie wybierana jest optymalna kombinacja spośród różnych kombinacji szczelin i biegunów, biorąc pod uwagę algorytm Enhanced Spotted Hyena Optimization (ESHO) (ulepszony algorytm optymalizacjihieny cętkowanej hieny), w którym skonfigurowana jest funkcja wielocelowa. W związku z tym, celami wielozadaniowymi są integracja odwrotnej siły elektromotorycznej, wyjściowego momentu obrotowego, momentu obrotowego przekładni, połączenia strumienia, tętnienia momentu obrotowego wraz ze stratami. Analiza uzyskanych wyników pokazuje, że proponowany algorytm określania optymalnej kombinacji szczelin jest bardziej wydajny niż inne kombinacje szczelin. Stwierdzono również, że wybór kombinacji szczelin i biegunów ma kluczowe znaczenie dla wydajnej pracy maszyn z magnesami trwałymi.
Rocznik
Strony
94--100
Opis fizyczny
Bibliogr. 41 poz., rys., wykr.
Twórcy
  • Al-Balqa Applied University, Department of Mechatronics Engineering, Al Salt, Jordan
  • Philadelphia University, Department of Mechanical Engineering, Amman, Jordan
  • Luminus Technical University College, Electomechanical Engineering Department, Amman, Jordan
  • Al-Balqa Applied University, Department of Mechanical Engineering, Al Salt, Jordan
  • State Biotechnological University, Department of Electricity Supply and Energy Management, Kharkiv, Ukraine
autor
  • Cyclone Manufacturing Inc, Mississauga, Ontario, Canada
  • Lviv National Environmental University, Department of Information Systems and Technologies, Lviv, Ukraine
Bibliografia
  • [1] Abdelmoula R., Benhadj N., Chaieb M., Neji R.: Finite element comparative analysis software of a radial flux synchronous motor for electric vehicle drive. Proceedings of the International Conference on Recent Advances in Electrical Systems, 2016, 62–67.
  • [2] Al_Issa H. A., Qawaqzeh M., Khasawneh A., Buinyi R., Bezruchko V., Miroshnyk O.: Correct Cross-Section of Cable Screen in a Medium Voltage Collector Networkwith Isolated Neutral of a Wind Power Plant. Energies 14, 2021, 3026 [http://doi.org/10.3390/en14113026].
  • [3] Ambekar R., Ambekar S.: Design investigation for continual torque operative performance of PMSM for vehicle. Sādhanā 45, 2020, 120 [http://doi.org/10.1007/s12046-020-01360-y].
  • [4] Andrade K. M., Santos H. E., Wellington M. V., Almeida T. E., Paula G. T.: PeMSyn – a free matlab-femm based educational tool to assist the design and performance assessment of synchronous machines. Eletron. Poten., Fortaleza 25(2), 2020, 163–172 [http://doi.org/10.18618/REP.2020.2.0009].
  • [5] Chakir A., Tabaa M., Moutaouakkil F., Medromi H., Alami K.: Control System for a Permanent Magnet Wind Turbine Using Particle Swarm Optimization and Proportional Integral Controller. International Review of Automatic Control (IREACO) 13(5), 2020 [http://doi.org/10.15866/ireaco.v13i5.18482].
  • [6] Chen X., Wang J.: Magnetomotive force harmonic reduction techniques for fractional-slot non-overlapping winding configurations in permanent-magnet synchronous machines. Chinese Journal of Electrical Engineering 3(2), 2017, 103–113 [http://doi.org/10.23919/CJEE.2017.8048416].
  • [7] Demir Y., Yolacan E., El-Refaie A., Aydin M.: Investigation of Different Winding Configurations and Displacements of a Nine-Phase Permanent-Magnet-Synchronous Motor with Unbalanced AC Winding Structure. IEEE Transactions on Industry Applications 55(4), 2018, 3660–3670 [http://doi.org/10.1109/TIA.2019.2913156].
  • [8] Dutta R., Pouramin A., Rahman M.: A novel rotor topology for high-performance fractional slot concentrated winding interior machine. IEEE Transactions on Energy Conversion 36(2), 2020, 658–670 [http://doi.org/10.1109/TEC.2020.3030302].
  • [9] Edhah S., Alsawalhi J., Al-durra A.: Multi objective optimization design of fractional slot concentrated winding synchronous machines. IEEE Access 7, 2019, 162874–162882 [http://doi.org/10.1109/ACCESS.2019.2951023].
  • [10] Gandzha S., Sogrin A., Kiessh I.: The comparative analysis of electric machines with integer and fractional number of slots per pole and phase. Procedia Engineering 129, 2015, 408–414 [http://doi.org/10.1016/j.proeng.2015.12.137].
  • [11] Hemeida A., Taha M., Abdallh A., Vansompel H., Dupre L., Sergeant P.: Applicability of fractional slot axial flux synchronous machines in the field weakening region. IEEE Transactions on Energy Conversion 32(1), 2016, 111–121 [http://doi.org/10.1109/TEC.2016.2614011].
  • [12] Iegorov O., Iegorova O., Miroshnyk O., Savchenko O.: Improving the accuracy of determining the parameters of induction motors in transient starting modes. Energetika 66(1), 2020, 15–23 [http://doi.org/10.6001/energetika.v66i1.4295].
  • [13] Ismagilov F., Vavilov V., Yamalov I., Karimov R.: Fault-Tolerant Electric Motors with Permanent Magnets and Electromagnetic Shunting. International Review of Aerospace Engineering (IREASE) 13(2), 2020, 51–58 [http://doi.org/10.15866/irease.v13i2.17751].
  • [14] Kolsi H., Ben Hadj N., Chaieb M., Neji R.: Design of Permanent Magnet Synchronous Motor by Means of Power Density Optimization For e-Vehicle Applications. International Review on Modelling and Simulations (IREMOS) 15(3), 2022 [http://doi.org/10.15866/iremos.v15i3.21739].
  • [15] Li G., Ren B., Zhu Z.: Design guidelines for fractional slot multi-phase modular machines. IET Electric Power Applications 11(6), 2017, 1023–1031 [http://doi.org/10.1049/iet-epa.2016.0616].
  • [16] Li X., Zhu Z., Thomas A., Wu Z., Wu X.: Novel modular fractional slot machines with redundant teeth. IEEE Transactions on Magnetics 55(9), 2019, 1–10 [http://doi.org/10.1109/TMAG.2019.2918190].
  • [17] Liu Y., Zhu Z.: Electromagnetic performance comparison of 18-slot/26-pole and 18-slot/10-pole fractional slot surface-mounted machines. 20th International
  • Conference on Electrical Machines and Systems (ICEMS) 2017, 11–14 [http://doi.org/10.1109/ICEMS.2017.8056383].
  • [18] Liu Y., Zhu Z.: Influence of gear ratio on the performance of fractional slot concentrated winding machines. IEEE Transactions on Industrial Electronics 66(10), 2019, 7593–7602 [http://doi.org/10.1109/TIE.2018.2885728].
  • [19] Lounthavong V., Sriwannarat W., Seangwong P., Siritaratiwat A., Khunkitti P.: Optimal Stator Design to Improve the Output Voltage of the Novel Three-Phase Doubly Salient Permanent Magnet Generator. International Journal on Energy Conversion (IRECON) 8(4), 2020, 118–125 [http://doi.org/10.15866/irecon.v8i4.19302].
  • [20] Makhad M., Zazi K., Zazi M., Loulijat A.: Smooth Super Twisting Sliding Mode Control for Permanent Magnet Synchronous Generator Based Wind Energy Conversion System. International Journal on Energy Conversion (IRECON) 8(5), 2020, 171–180 [http://doi.org/10.15866/irecon.v8i5.19362].
  • [21] Murali N., Mini V. P., Ushakumari S.: Modified V-Shaped Interior Permanent Magnet Synchronous Motor Drive for Electric Vehicle. International Review on Modelling and Simulations (IREMOS) 14(6), 2021 [http://doi.org/10.15866/iremos.v14i6.20884].
  • [22] Nur T., Mawar S.: Improvement of Cogging Torque Reduction by Combining the Magnet Edge Shaping and Dummy Slot in Stator Core of Fractional Slot Number in Permanent Magnet Machine. IOP Conference Series Materials Science and Engineering 807(1), 2020, 012023, 29–30 [http://doi.org/10.1088/1757-899X/807/1/012023].
  • [23] Ouiddir F., Benouzza N., Gherabi Z.: Stator Current Square Analysis to Discriminate Between Eccentricity and Demagnetization Faults in PMSMs. International Review of Electrical Engineering (IREE) 17(1), 2022, 11–19 [http://doi.org/10.15866/iree.v17i1.20950].
  • [24] Pazyi V., Miroshnyk O., Moroz O., Trunova I., Savchenko O, Halko S.: Analysis of technical condition diagnostics problems and monitoring of distribution electrical network modes from smart grid platform position. IEEE KhPI Week on Advanced Technology (KhPIWeek), 2020, 20168725, 57–60 [http://doi.org/10.1109/KhPIWeek51551.2020.9250080].
  • [25] Peng B., Wang X., Zhao W., Ren J.: Study on shaft voltage in fractional slot machine with different pole and slot number combinations. IEEE Transactions on Magnetics 55(6), 2019, 1–5 [http://doi.org/10.1109/TMAG.2019.2898566].
  • [26] Pezhman J., Taghipour S., Khoshtarash J.: Expansion of the feasible slot pole combinations in the fractional slot PM machines by applying three-slot pitch coils. IEEE Transactions on Energy Conversion 34(2), 2018, 993–999 [http://doi.org/10.1109/TEC.2016.2614011].
  • [27] Qawaqzeh M., Szafraniec A., Halko S., Miroshnyk O., Zharkov A.: Modelling of a household electricity supply system based on a wind power plant. Przegląd Elektrotechniczny 96, 2020, 36–40 [http://doi.org/10.15199/48.2020.11.08].
  • [28] Qawaqzeh M., Zaitsev R., Miroshnyk O., Kirichenko M., Danylchenko D., Zaitseva L.: High-voltage DC converter for solar power station. International journal of power electronics and drive system 11(4), 2020, 2135–2144 [http://doi.org/10.11591/ijpeds.v11.i4.pp2135-2144].
  • [29] Røkke A., Nilssen R.: Analytical calculation of yoke flux patterns in fractional-slot machines. IEEE Transactions on Magnetics 53(4), 2017, 1–9 [http://doi.org/10.1109/TMAG.2016.2623583].
  • [30] Savchenko O. A., Miroshnyk O. O., Dyubko S., Shchur T., Komada P., Mussabekov K.: Justification of ice melting capacity on 6-10 kV OPL distributing power networks based on fuzzy modeling. Przeglad Elektrotechniczny 95(5), 2019, 106–109.
  • [31] Shen J., Wang C., Miao D., Jin M., Shi D., Wang Y.: Analysis and optimization of a modular stator core with segmental teeth and solid back iron for pm electric machines. IEEE International Electric Machines & Drives Conference (IEMDC), 2011, 1270–1275 [http://doi.org/10.1109/IEMDC.2011.5994787].
  • [32] Szafraniec A., Halko S., Miroshnyk O., Figura R., Zharkov A., Vershkov O.: Magnetic field parameters mathematical modelling of windelectric heater. Przeglad elektrotechniczny 97(8), 2021, 36–41.
  • [33] Tahanian H., Aliahmadi M., Faiz J.: Ferrite Permanent Magnets in Electrical Machines: Opportunities and Challenges of a Non-Rare-Earth Alternative. IEEE Transactions on Magnetics 56(3), 2020, 1–20 [http://doi.org/900120.10.1109/TMAG.2019.2957468].
  • [34] Tessarolo A., Mezzarobba M., Barbini N.: Improved four-layer winding design for a 12-slot 10-pole machine using unequal tooth coils. 42nd Annual Conference of the IEEE Industrial Electronics Society – IECON 2016, 1686–1691 [http://doi.org/10.1109/IECON.2016.7793399].
  • [35] Torreggiani A., Bianchini C., Davoli M., Bellini A.: Design for Reliability: The Case of Fractional-Slot Surface Permanent-Magnet Machines. Energies 12, 2019, 1691 [http://doi.org/10.3390/en12091691].
  • [36] Torrent M., Perat J. I., Jiménez J. A.: Permanent Magnet Synchronous Motor with Different Rotor Structures for Traction Motor in High Speed Trains. Energies 11, 2018, 1549 [http://doi.org/10.3390/en11061549].
  • [37] Trunova I., Miroshnyk O., Savchenko O., Moroz O.: The perfection of motivational model for improvement of power supply quality with using the one-way analysis of variance. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu 6, 2019, 163–168 [http://doi.org/10.29202/nvngu/2019-6/24].
  • [38] Tymchuk S., Miroshnyk O.: Assess electricity quality by means of fuzzy generalized index. Easternt-European Journal of enterprise technologies 3/4(75), 2015, 26–31 [http://doi.org/10.15587/1729-4061.2015.42484].
  • [39] Wang Q., Li Y., Deng G., Zhang H., Li Y., Xu J., Wang X.: Optimization Study of Poles-Slots Combination of Large Capacity Offshore HTS Wind Generator Based on Ansys Maxwel. Journal of Physics Conference Series 1754, 2021, 012042 [http://doi.org/10.1088/1742-6596/1754/1/012042].
  • [40] Zhu Z., Wu D., Ge X.: Investigation of voltage distortion in fractional slot interior machines having different slot and pole number combinations. IEEE Transactions on Energy Conversion 31(3), 2015, 1192–1201 [http://doi.org/10.1109/TEC.2016.2553140].
  • [41] Zou T., Qu R., Li D., Jiang D.: Synthesis of fractional-slot vernier permanent magnet machines. International Conference on Electrical Machines (ICEM) 2016, 911–917 [http://doi.org/10.1109/ICELMACH.2016.7732634].
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a86d8739-8179-460c-8359-a52582e1f065
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.