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Abstract. Spectral properties of ladder and spatial electrical networks are considered. Dynamic properties of the networks are characterised

by eigenvalues of the Jacobi cyclic state matrix. The effective formulas for eigenvalues of appropriate uniform systems are given. Numerical

calculations were made using MATLAB.
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1. Introduction

The current microelectronics manufacturing technologies al-

low you to make new items, unknown in classical electronics

– all kinds of RC lines [1]. RC lines represent the structures of

a distributed RC system [2], which merge infinite number of

individual elements R and C into one microelectronic element.

In some cases, systems with large numbers of elements R and

C may be replaced with one element of a distributed RC sys-

tem. The simplest and the most popular form of distributed

RC system structure is RC line, usually approximated with

RC circuit ladder (see Fig. 1). The structure of the RC line

(and consequently the structure of the ladder ) depends on the

technology of its implementation. RC line is made in layers

– it is composed of three layers: conductive , resistive and

dielectric. The conductive and resistive layers are separated

by a dielectric layer forming distributed capacity. RC line is

an elementary “cell” of more complex structures of a distrib-

uted RC system. RC line is a special case of RCR line (see

Fig. 2) or RRC line (see Fig. 3). For example, RCR line has

a similar structure to the RC lines, except that in place of the

conductive layer is a resistive layer. In practical applications

we often encounter the RCR line. Among the non-uniform

RC lines linear and exponential lines are used. Generally the

RC line has a spatial arrangement (see Fig. 4). Analysis of

the spatial network is quite complicated, but feasible

There is a large number of the physical and technical

processes described with partial differential equations of a

parabolic type [1–7]. Searching for numerical solutions uses

discretization of spatial variables [8]. Consequently, in place

of the partial equation we get an ordinary differential equa-

tion, which can be modeled by an appropriate ladder system

[3, 4, 9, 10], generally with a corresponding spatial network

[11, 12].

Some difficulties arise in modeling of vibrating systems

with distributed parameters with an infinite number of fre-

quencies using finite dimensional ladder systems LC or RLC

[4, 10, 12]. The LC ladder system has a finite number of

natural frequencies. It is known that stimulation of the dis-

tributed system with a signal of frequency, which has been

omitted in the finite-dimensional approximation, can lead to

the destruction of the system (resonance).

In the mathematical models of ladder systems there are

tridiagonal Jacobi matrices [13–17], which in particular cases

are Metzler matrices or oscillating matrices [14]. Therefore,

some basic properties of such a matrix are presented in this

work. These elements enable a reader to analyze other types

of structures and ladder systems.

There is considerable literature on different types of lad-

der systems [9, 18–20]. The authors often emphasize the close

relationship between ladder systems and distributed systems

described by partial differential equations [9, 10]. The appli-

cations of RC ladder systems for analysis and modeling of

microelectronic circuits [1, 21], supercapacitors [21–24], bio-

logical systems [7, 25], temperature distribution in the mod-

eling of spatial structures [9] and in electricity transmission

problems [26–29] are of particular interest.

In this work the dynamic properties characterized by the

eigenvalues of the following structures spacious were given:

integrated ladder RC, RCR, RRC and RC network RRCRR

flat and spatial. Such structures has recently been used eg. for

modeling of supercapacitors. The study also considered RCR

ring systems and exponentially convergent RC. Most of the

results obtained (see Secs. 4–9) is new comparing with results

known in the existing literature.

The paper is organized as follows: in Sec. 2 spectral prop-

erties of tridiagonal matrices are considered. In Sec. 3 basic

RC ladder structure was presented. In Sec. 4 we considered

the RCR-uniform ladder network. In Sec. 5 the RCR-ring uni-

form ladder network is considered. In Sec. 6 the RRC and

RRCR-uniform ladder networks are presented. In Sec. 7 the

exponential RC-ladder network is considered. In Sec. 8 the

RC flat network is analyzed whereas in Sec. 9 we analyze the

RC-spatial network. Concluding remarks are given in Sec. 10.
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2. Cyclic and tridiagonal Jacobi matrices

A special case of the cyclic Jacobi matrix is a tridiagonal

Jacobi matrix. Tridiagonal matrices are naturally associated

with the ladder systems whereas the cyclic Jacobi matrix is

used in a description of ring ladder networks systems. For this

reason, below we present the basic properties of the Jacobi

matrices [15, p. 26 and 27].

We consider n×n real matrix denoted by Bn. For exam-

ple, for n = 5 we have

B5 =

















b1 c1 0 0 a1

a2 b2 c2 0 0

0 a3 b3 c3 0

0 0 a4 b4 c4

c5 0 0 a5 b5

















. (1)

Remark 1. If a1cn > 0, ai+1ci > 0, i = 1, 2, 3, ..., n − 1
and a1 · a2 · · · an = c1 · c2 · · · cn, then Bn is called cyclic

Jacobi matrix. Eigenvalues λi(Bn) of Bn are real, but not

necessarily single [15, p. 139].

Example 1. We consider n×n cyclic Jacobi matrix Bn with

bi = b, ai = ci = 1, given in following equality and denote by

JCY C (n; b) =

















b 1 0 . . . 1

1 b 1 . . . 0

0 1 b . . . 0

. . . . . . . . . . . . . . .

1 0 0 . . . b

















, (2)

where b is real number. The eigenvalues λk of cyclic matrix

JCY C(n; b) [15, p. 159] are given by

λk(JCY C (n; b)) = b+ 2 cosϕk, k = 1, 2, 3, ..., n (3)

where

ϕk = k2π/n. (4)

Remark 2. If a1 = 0, cn = 0 and ai+1ci > 0 for

i = 1, 2, 3, ..., n − 1, then An = Bn is following a n × n
tridiagonal Jacobi matrix (shown for simplification for n = 5):

A5 =

















b1 c1 0 0 0

a2 b2 c2 0 0

0 a3 b3 c3 0

0 0 a4 b4 c4

0 0 0 a5 b5

















. (5)

The tridiagonal real Jacobi matrixAn has only single (dis-

tinct) real eigenvalues λ1, . . . , λn [15, p. 83, p. 104]. Thus,

the matrix An is similar to the diagonal canonical Jordan form

J = diag(λ1, λ2, . . . , λn).

Remark 3. If ai = a, bi = b, ci = c and additionally

b1 = b+ y, bn = b+ z. Let T be a n× n tridiagonal matrix

given by

T (n; a, b, c, y, z) =



















b+ y c . . . 0

a b c . . . 0

0 a b
. . . 0

. . . . . .
. . .

. . . c

0 0 . . . a b+ z



















. (6)

Then the determinant of T (n; a, b, c, y, z) is given by [30,

15, p. 154]

detT (n; a, b, c, y, z)

= (
√
ac)n

sin(n+ 1)ϕ+ y+z√
ac

sinϕ+ yz√
ac

sin(n− 1)ϕ

sinϕ
,

(7)

where ϕ is a complex number such that b = 2 cosϕ.

Example 2. For the special case that y = z = 0, the determi-

nant of T (n; a, b, c, 0, 0) is given by [30]

detT (n; a, b, c, y, z) =

n
∏

i=1

(b − 2
√
ac cosϕk),

ϕk =
kπ

n+ 1
.

(8)

The eigenvalues λk of T (n; a, b, c, 0, 0) we obtain from

equation detT (n; a, λ− b, c, 0, 0) = 0. Thus (see also . . . )

λk = b+ 2
√
ac cosϕk, k = 1, 2, 3, ..., n, (9)

where

ϕk = kπ/(n+ 1). (10)

Let [19]

P =

√

2

n+ 1











sinϕ1 sin 2ϕ1 . . . sinnϕ1

sinϕ2 sin 2ϕ2 . . . sinnϕ2

. . . . . . . . . . . .

sinϕn sin 2ϕn . . . sinnϕn











, (11)

where ϕk is given in (10). You can check that P 2 = I . Thus

P−1 = P and

PTP = diag (λ1, λ2, . . . , λn), (12)

where λk is given in (9). In others words, the matrix

T (n; a, b, c, 0, 0) is diagonalizable.

3. Fundamental model of distributed

RC network (RC-ladder network)

Consider an electric RC-ladder network shown for n = 3 in

Fig. 1. The parameters of network Ri > 0 and Ci > 0 are

known.

The system shown in Fig. 1 is described (for any n) by

equations

ẋi(t) = ai xi−1(t) + bi xi(t) + ci xi+1(t), (13)

where i = 1, 2, 3, ..., n, x0(t) = u(t), xn+1(t) = 0 and

ai = 1/(RiCi), ci = 1/(Ri+1Ci),

bi = −(ai + ci).
(14)
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Fig. 1. RC-ladder network for n = 3

The RC-ladder system can be described by following ma-

trix differential equation:

ẋ(t) = Anx(t) +Bu(t), BT = [1 0 0 . . . 0 0],

x(t) = [x1(t) . . . xn(t)]T ,
(15)

where An is given (for n = 5) by (5) with parameters (24).

Remark 4. The matrix An is similar (see Remark 2) to the

diagonal canonical Jordan form, that is to say that there exists

P such that P−1AnP = J = diag (λ1, λ2, . . . , λn). Addi-

tionally λk ∈ [−m, 0), k = 1, ..., n, m = 2 maxk(ak + ck),
ak + ck = (1/Rk + 1/Rk+1)/Ck [31] i.e. the RC-ladder sys-

tem is is asymptotically stable.

Let x(t) = Pz(t). Thus z(t) = P−1x(t) and from (25)

we have

żk(t) = λkzk(t) + wku(t). (16)

The function G(s) of the system (26) is given by

G(s) =
wk

s− λk

=
Zk(s)

Uk(s)
. (17)

The unit-step response of the system (27) can be ex-

pressed as

yk(t) = L−1{G(s)} = wk exp(λkt). (18)

Remark 5. Let J(n; b) = T (n; 1, b, 1, 0, 0), where

T (n; a, b, c, y, z) is given by (6). Let x0(t) = u(t), xn+1(t) =
0. If Ri = R, Ci = C (see Fig. 1) then the system (13), (14) is

called RC-uniform ladder network. The RC-uniform ladder

system (13), (14) can be described by matrix equation

RCẋ(t) = J(n; −2)x(t) +Bu(t),

BT = [1 0 0 . . . 0 0],

x(t) = [x1(t) . . . xn(t)]T .

(19)

The eigenvalues λk of the n × n matrix J(n; b) are

given by (9) with a = c = 1. Let x(t) = Pz(t). Thus

z(t) = P−1x(t) and from (19) we have equation (16) with

λk = − 2

RC
(1 − cos ϕk) = − 4

RC
sin2 ϕk

2
,

wk =
1

RC

√

2

n+ 1
sinϕk,

ϕk =
k π

n+ 1
,

(20)

where k = 1, 2, 3, ..., n.

Now we can consider other structures of RC-ladder net-

works. After presenting the basic properties of the (see Fig. 1)

RC circuit model with distributed parameters we analyze oth-

er structures, which will be reduced to the basic structure

described with scalar differential equation (16).

4. RCR-uniform ladder network

Now we consider RCR-uniform ladder network. For n = 3
the RCR-ladder network is shown in Fig. 2.

Fig. 2. RCR-uniform ladder network for n = 3

The RCR-uniform ladder network can be described by the

following equation

2RC ẋ(t) = J(n; −2)x(t) +Bu(t),

BT = [1 0 0 . . . 0],
(21)

where J(n; b) = T (n; 1, b, 1, 0, 0), where T (n; a, b, c, y, z) is

given by (6). The eigenvalues λk , k = 1, 2, 3, ..., n, of the

n× n matrix J(n; b) are given by (9) with a = c = 1.

Let x(t) = Pz(t), where P is given in (11), detP 6= 0.

Thus from (21) we have equation (16) with

λk = − 1

RC
(1 − cosϕk) = − 2

RC
sin2 ϕk

2
,

wk =
1

2RC

√

2

n+ 1
sinϕk,

ϕk =
k π

n+ 1

(22)

where k = 1, 2, 3, ..., n. The system (21) is diagonalizable,

i.e. system (21) can be broken down into n scalar systems

given by (16) with parameters (22).

5. RCR-ring uniform ladder network

Consider the fundamental RC-ladder system (13) and let

x0(t) = xn(t), xn+1(t) = x1(t)

and Rn+1 = R1.
(23)

In this case the system (13), (23) is called an electric RC-ring

network.

If Ri = R, Ci = C, then the RCR-ring system (see Fig. 4

for n = 6) can be described by equation

2RCẋ(t) = JCY C(n; −2)x(t), (24)

where x(t) = [x1(t) x2(t) ... xn(t)]T and matrix

JCY C(n; b) is given in (2). The system given in (24) is

diagonalizable (see eigenvalues of matrix JCY C (n; b) given

by (3), (4)).

The RCR-ring uniform ladder network for n = 6 is shown

in Fig. 3.
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Fig. 3. RCR-ring uniform ladder network for n = 6

6. RRC and RRCR-uniform ladder network

In this section let us consider RRCr-ladder network (see Fig. 4

for n = 3). If r = 0, then the ladder network is called an elec-

tric RRC- uniform ladder network.

Fig. 4. RRCr-uniform ladder network for n = 3

The RRC-ladder network (see Fig. 4 with r = 0) can be

described in general by equation

−RC J(n;−3) ẋ(t) = J(n;−2)x(t) +B u(t), (25)

where x(t) = [x1(t) x2(t) . . . xn(t)]T , B = [1 0 . . . 0]T

and matrix J(n; b) = T (n; 1, b, 1, 0, 0), where

T (n; a, b, c, y, z) is given by (6).

Remark 6. Consider the matrix J(n ; b) =
T (n ; 1, b, 1, 0, 0). Let e and g be a real numbers. Note

that J(n ; e+ g) = J(n ; e)+ g I , where I is the identity ma-

trix n×n. Consequently λk(J(n ; e+ g)) = e+ g+2 cosϕk.

Matrix J(n ; e + g) = J(n ; e) + g I is diagonalizable by P
given in (11).

The system (25) is diagonalizable [24] i.e. system (25)

can be broken down into n scalar systems given by following

equation:

RC sk(−J(n;−3)) żk(t)

= sk(J(n;−2)) zk(t) +

√

2

n+ 1
sinϕk u(t),

(26)

where k = 1, 2, 3, . . . , n and x(t) = Pz(t), z(t) = Px(t),
P is given in (11). The eigenvalues sk of the n × n matrix

J(n; b) are given by (9), (10) with a = c = 1. Thus we have

(see Remark 6)

sk(−J(n;−3)) = 1 + 4 sin2 ϕk

2
> 0,

sk(J(n;−2)) = −4 sin2 ϕk

2
< 0.

(27)

From (26) and (30) we have (see (16))

żk(t) = λkzk(t) + wk u(t),

k = 1, 2, 3, . . . , n,
(28)

where λk = {sk(J(n ; −2))/sk(J(n ; −3))}/RC,

λk = − 4 sin2 ϕk

2

RC (1 + 4 sin2 ϕk

2
)
,

wk =

√

2

n+1
sinϕk

RC (1 + 4 sin2 ϕk

2
)
.

(29)

If r = R (see Fig. 4), then the ladder network is called

RRCR- uniform ladder network. The RRCR-ladder network

can be described by equation

−RC J(n;−4) ẋ(t) = J(n;−2)x(t) +B u(t). (30)

The system (30) is diagonalizable, i.e. system (30) can be

broken down into n scalar systems given by following equa-

tion:

RC sk(−J(n;−4)) żk(t)

= sk(J(n;−2)) zk(t) +

√

2

n+ 1
sinϕk u(t),

(31)

where k = 1, 2, 3, . . . , n and the eigenvalues sk of J(n ; b)
are given by (9), (10) with a = c = 1:

sk(−J(n ; −4)) = 2 + 4 sin2 ϕk

2
> 0,

sk(J(n ; −2) = −4 sin2 ϕk

2
< 0.

(32)

From (31) and (32) we have (see (16))

żk(t) = λkzk(t) + wk u(t),

k = 1, 2, 3, . . . , n,
(33)

where

λk =
sk(J(n ; −2))

RC sk(J(n ; −3))
,

wk =

√

2/(n+ 1) sinϕk

RC sk(J(n ; −3))
.

(34)

7. Exponential RC-ladder network

Consider the long line [2, p. 22 and 46], [10] of heteroge-

neous parameters R and C. Let the length of the line is equal

to 1, z ∈ (0, 1). Let h = 1/(n+ 1) be a step discretization

variable z ∈ (0, 1). Heterogeneous exponentially converges

transmission line has the following parameters given by for-

mulas: R(z) = R exp (az) and C(z) = C exp (−az). In this
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case the suitable RC-ladder system similar to that shown in

Fig. 1 with parameters

Ri = kiR, Ci = k−iC, k > 0. (35)

Systems (15), (35) are called the exponential RC-ladder net-

work. A state matrix of systems (15), (35) is given by

An =
1

RC
T (n ; 1, −(1 + 1/k), 1/k, 0, 0) =

1

RC












−(1 + 1/k) 1/k 0 . . . 0

1 −(1 + 1/k) 1/k . . . 0

.

.

.
. . .

. . .
. . .

.

.

.

0 . . . 1 −(1 + 1/k) 1/k

0 . . . 0 1 −(1 + 1/k)













,

(36)

where T (n; a, b, c, y, z) is given by (6). Eigenvalues of matrix

(36) are given by

λk = − 1

RC
(1 +

1

k
− 2

√

1

k
cosϕk), (37)

where k = 1, 2, 3, . . . , n, ϕk is given in (10). It is evident that

the exponential RC-ladder network may be represented in the

form (16).

8. RC-plane network

Detail of the RC-plane network in R2 is shown in Fig. 5. The

scheme of a flat RC-network is shown in Fig. 6. The RC-plane

network can be described by equation

RC ẋi,k = xi,k−1 − 2xi,k

+xi,k+1 + xi−1,k − 2xi,k + xi+1,k,
(38)

where xi,k is the voltage on the capacitance C associated with

the node (i, k), i = 1, 2, 3, . . . ,m and k = 1, 2, 3, . . . , n.

Fig. 5. RC- plane network

The system (38) can be described by equation

RC ẋ(t) = JBLOC [m; J(n; b)] x(t) +Bu(t). (39)

Fig. 6. Scheme a flat RC-network

A method of power supply determines the matrix B. The

matrix B is dependent on the boundary control. Real block-

matrix JBLOC [m; J(n; b)] for m = 2, n = 3, b = −4 is

given by equation

JBLOC [2 ; J(3 ; −4)]

=





















− 4 1 0 1 0 0

1 −4 1 0 1 0

0 1 −4 0 0 1

1 0 0 −4 1 0

0 1 0 1 −4 1

0 0 1 0 1 −4





















=

[

J(3 ; −4) I3×3

I3×3 J(3 ; −4)

]

.

(40)

The eigenvalues si,k of JBLOC [m; J(n; b)] given by for-

mula [11]

si,k = b+ 2 (cosψi + cosϕk), (41)

where k = 1, 2, 3, . . . , n and i = 1, 2, 3, . . . ,m

ϕk = kπ /(n+ 1), ψi = iπ/(m+ 1). (42)

Formulas for eigenvectors of the block-matrix

JBLOC [m; J(n; b)] are given in [11].

Example 2. Consider the matrix (40). Let

V=











−0.3536 0.5000 0.3536 0.3536 −0.5000 0.3536

0.5000 0.0000 −0.5000 0.5000 0.0000 0.5000

−0.3536 −0.5000 0.3536 0.3536 0.5000 0.3536

0.3536 −0.5000 0.3536 −0.3536 −0.5000 0.3536

−0.5000 0.0000 −0.5000 −0.5000 0.0000 0.5000

0.3536 0.5000 0.3536 −0.3536 0.5000 0.3536











.

(43)

Thus

V TJBLOC [2; J(3;−4)]V = diag (−6.4142, −5.0000,

−4.4142, −3.5858, −3.0000, −1.5858).

The system (39) is diagonalizable (see eigenvalues of

block-matrix JBLOC [m; J(n; b)] given in Eq. (41). The
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eigenvalues of JBLOC [m; J(n; b)], not necessarily single.

This is important for the study of controllability of system

(39) – see for example [32–34].

9. RC-spatial network

The scheme of a spatial three-dimensional RC-network is

shown in Fig. 7. The RC-spatial network can be described

by equation

RC ẋj, i,k = xj, i,k−1 − 2xj, i,k + xj, i,k+1 + xj, i−1,k

− 2xj, i,k + xj, i+1,k + xj−1, i,k − 2xj, i,k + xj+1, i,k,
(44)

where xj, i,k is the voltage on the capacitance C associat-

ed with the node (j, i, k), which spans the junction with

the common duct without impedance, i = 1, 2, 3, . . . ,m,

k = 1, 2, 3, . . . , n and j = 1, 2, 3, . . . , l [11, 12]. R is the

resistance value, which is located between any two adjacent

nodes. Edge nodes – the nodes to which any index is equal to

zero or one of the numbers: l+ 1, m+ 1, n+ 1. Edge nodes

are powered by a suitable control voltage.

Fig. 7. Scheme a spatial three-dimensional RC-network

The formula (44) creates a corresponding state big-block-

matrix denote by

JBIGBLOCK {l; JBLOC [m; J(n; b)]}.
Dimension of quadratic matrix

JBIGBLOCK {l; JBLOC [m; J(n; b)]}
is l ·m ·n. Thus the system (42) can be described by equation

RC ẋ(t) = JBIGBLOC {l; JBLOC [m; J(n; b)] }

x(t) +Bu(t).
(45)

The matrix B is dependent on the boundary

control. The eigenvalues sj, i, k of big-block-matrix

JBIGBLOCK {l; JBLOC [m; J(n; b)]} are given in by

formula [11, 12]

sj, i, k = b + 2 (cos θj + cosψi + cosϕk), (46)

where k = 1, 2, 3, . . . , n, i = 1, 2, 3, . . . ,m, j = 1, 2, 3, . . . , l
and

ϕk = kπ/(n+ 1), ψi = iπ/(m+ 1),

θj = jπ/(l + 1).
(47)

Formulas for eigenvectors of the big-block-matrix

JBIGBLOCK {l; JBLOC [m; J(n; b)]} are given in the

paper [11].

10. Conclusions and remarks

• In this paper the dynamic properties characterized by the

eigenvalues of the following structures are considered: the

ladder systems RC, RCR, RRC, RRCRR and a flat and

spatial RC networks. The study also considered an expo-

nentially convergent ladder network and RCR ring systems.

• We proved that the analytical approach to complex RC lad-

der systems is possible. The RC structures can be trans-

formed to (16).

• Using (7) it is possible to find analytical formulas for non-

uniform systems (nonuniformity at the ends of the line or

system with different boundary conditions).

• The ladder and ring networks can be applied in approx-

imation of processes such as: hot mill in metallurgy [4],

long transmission line [9], multicomponent rectification in

distillation column, or when we consider an approximation

of some distributed parameter systems [3, 6, 8].

• Analyses of RC structures shown in Figs. 2–5 (see Secs. 4–

9) are original and new compared with the results existing

in literature. Such structures are used for example in super-

capacitors modeling [21–24].

• The considerations can be extended to the electric frac-

tional ladder networks too. The problems associated with

the analysis of fractional systems can be found in [22, 23,

35–39].
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