PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Using Allometric Equations to Estimate Mangrove Biomass and Carbon Stock in Demta Bay, Papua Province, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mangrove ecological services as carbon sinks and storage are very useful in the efforts to mitigate global warming and climate change. In this study, the above and below-ground biomass, carbon stock, as well as carbon sequestration by the mangroves in Demta Bay, Papua Province, Indonesia were estimated. Allometric equations were used to determine the mangrove biomass in 36 observation plots. The biomass value was used to determine carbon stock and estimate carbon sequestration. Nine mangrove species were found in Demta Bay, with the contribution of mangrove species to biomass (AGB and BGB) in the following order: Rhizophora apiculata > Rhizophora mucronata > Bruguiera gymnorhiza > Bruguiera cylindrica > Heritiera Littoralis > Xylocarpus molucensis > Rhizophora stylosa > Avicennia marina > Sonneratia caseolaris. The average mangrove biomass was estimated at 174.20 ± 68.14 t/ha (AGB = 117.62 ± 45.68 t/ha and BGB = 56.58 ± 22.49 t/ha). The carbon stocks in mangroves at the Ambora site were higher than the Tarfia and Yougapsa sites, averaging 123.57 ± 30.49 t C/ha, 81.64 ± 25.29 t C/ha, and 56.09 ± 39.03 t C/ha, respectively. The average carbon stock in the mangrove ecosystem of Demta Bay is estimated at 87.10 ± 34.07 t C/ha or equivalent to 319.37 ± 124.92 t CO2 e/ha. The results of this study indicate that the mangrove ecosystem in Demta Bay stores quite high carbon stocks, so it is necessary to maintain it with sustainable management. Therefore, climate change mitigation is not only done by reducing the carbon emission levels but also needs to be balanced by maintaining the mangrove ecosystem services as carbon sinks and sequestration.
Rocznik
Strony
263--271
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Department of Marine Science and Fisheries, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
  • Center for Marine and Fisheries Resources Studies, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
  • Department of Marine Science and Fisheries, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
  • Center for Marine and Fisheries Resources Studies, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
  • Department of Marine Science and Fisheries, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
  • Center for Marine and Fisheries Resources Studies, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
autor
  • Department of Marine Science and Fisheries, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
  • Center for Marine and Fisheries Resources Studies, Cenderawasih University, Kamp Wolker Street, Jayapura City 99315, Papua Province, Indonesia
Bibliografia
  • 1. Abino A.C., Castillo J.A.A., Lee Y.J. 2014. Assessment of species diversity, biomass and carbon sequestration potential of a natural mangrove stand in Samar, the Philippines. Forest Sci. Technol. 10(1), 2–8.
  • 2. Alongi D.M. 2012. Carbon sequestration in mangrove forests. Carbon Manag. 3(3), 313–322.
  • 3. Bouillon S., Borges A.V., Castañeda‐Moya E., Diele K., Dittmar T., Duke N.C., et al. 2008. Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemi Cycles 22, GB2013.
  • 4. Clough B.F., Scott K. 1989. Allometric relationships for estimating above-ground biomass in six mangrove species. For. Ecol. Manag. 27, 117–127.
  • 5. Dharmawan I.W.S., Siregar, C.A. 2008. Soil carbon and carbon estimation of Avicennia marina (Forsk.) Vierh. stand at Ciasem, Purwakarta. Jurnal Penelitian Hutan dan Konservasi Alam 5(4), 317–328 (in Indonesian).
  • 6. Donato D.C., Kauffman J.B., Murdiyarso D., Kurnianto S., Stidham M., Kanninen M. 2011. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4(5), 293–297.
  • 7. Estrada G.C.D., Soares M.L.G. 2017. Global patterns of aboveground carbon stock and sequestration in mangroves. An Acad Bras Ciênc 89(2), 973–989.
  • 8. Eusop M.E.M., Ismail M.H., Kasim M.R.M. 2018. Estimating aboveground biomass and carbon stocks of mangrove forests in Kuala Sepetang, Perak. The Malaysian Forester 81(2), 145–153.
  • 9. Fromard F., Puig H., Mougin E., Marty G., Betoulle J.L., Cadamuro, L. 1998. Structure, above-ground biomass and dynamics of mangrove ecosystems: New data from French Guiana. Oecologia 115, 39–53.
  • 10. Gevana D.T., Im S. 2016. Allometric models for Rhizophora stylosa griff. in dense monoculture plantation in the Philippines. The Malaysian Forester 79(1&2), 39–53.
  • 11. Giri C., Ochieng E., Tieszen L.L., Zhu Z., Singh A., Loveland T., et al. 2011. Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol. Biogeography 20, 154–159.
  • 12. Hanh N.T.H., Tinh P.H., Tuan M.S. 2016. Allometry and biomass accounting for mangroves Kandelia obovata Sheue, Liu & Yong and Sonneratia caseolaris (L.) Engler planted in coastal zone of Red River Delta, Vietnam. Int. J. Dev. Res. 6(5), 7804–7808.
  • 13. Harishma K.M., Sandeep S., Sreekumar V.B. 2020. Biomass and carbon stocks in mangrove ecosystems of Kerala, southwest coast of India. Ecological Processes 9, 31.
  • 14. Hendri H., Hadiyan Y., Rumbruren Y.P., Moeljono S., Maturbongs R. 2020. Vegetation structure and potential of blue carbon based on hydromorphic degraded mangrove in the Northern Manokwari, West Papua. IOP Conf Series: Earth and Environmental Science 522, 012016.
  • 15. Heriyanto N.M., Subiandono, E. 2012. Composition and structure, biomass, and potential of carbon content in mangrove forest at National Park Alas Purwo. Jurnal Penelitian Hutan dan Konservasi Alam 9(1), 23–32 (in Indonesian).
  • 16. Heriyanto N.M., Subiandono E. 2016 Role of mangrove biomass in carbon sink, in Kubu Raya, West Kalimantan. Jurnal Analisis Kebijakan 13(1), 1–12 (in Indonesian).
  • 17. Hinrichs S., Nordhaus I., Geist S.J. 2009. Status, diversity and distribution patterns of mangrove vegetation in the Segara Anakan lagoon, Java, Indonesia. Reg. Environ. Change 9, 275–289.
  • 18. Intergovernmental Panel on Climate Change (IPCC). 2006. IPCC Guidelines for national greenhouse gas inventories. Volume 4: Agriculture, forestry and other land use. Hayama Japan: Institute for Global Environmental Strategies. http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.html
  • 19. Jaikishun S., Ansari A.A., Dasilva P., Hosen A. 2017. Carbon storage potential of mangrove forest in Guyana. Bonorowo Wetlands 7(1), 43–54.
  • 20. Kalor J.D., Indrayani E., Akobiarek M.N.R. 2019. Fisheries resources of mangrove ecosystem in Demta Gulf, Jayapura, Papua, Indonesia. AACL Bioflux 12(1), 219–229.
  • 21. Kauffman J.B., Adame M.F., Arifanti V.B., SchileBeers L.M., Bernardino A.F., Bhomia R.K., et al. 2020. Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecol. Monogr. 90(2), e01405.
  • 22. Kauffman J.B., Bhomia R.K. 2017. Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLoS ONE 12(11), e0187749.
  • 23. Kauffman J.B., Donato, D.C. 2012. Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR Working Paper No. 86. Bogor: Center for International Forestry Research (CIFOR).
  • 24. Kauffman J.B., Heider C., Norfolk J., Payton F. 2014. Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecol. Appl. 24, 518–527.
  • 25. Kementerian Negara Lingkungan Hidup. 2004. Decree of the Minister of Environment of the Republic of Indonesia, number 201 of 2004 concerning standard criteria and guidelines for determining mangrove damage. Jakarta: Kementerian Lingkungan Hidup (in Indonesian).
  • 26. Kepel T.L., Suryono D.D., Ati R.N.A., Salim H.L., Hutahaean, A.A. 2017. Important value and economic value estimation of carbon storage of mangrove vegetation in Kema, North Sulawesi. Jurnal Kelautan Nasional 12(1), 19–26 (in Indonesian).
  • 27. Komiyama A., Ong J.E., Poungparn S. 2008. Allometry, biomass, and productivity of mangrove forests: A review. Aquat. Bot. 89(2), 128–137.
  • 28. Komiyama A., Poungparn S., Kato, S. 2005. Common allometric equations for estimating the tree weight of mangroves. J. Trop. Ecol. 21, 471–477.
  • 29. Kusmana C., Sabiham S., Abe K., Watanabe H. 1992. An estimation of above ground tree biomass of a mangrove forest in East Sumatera, Indonesia. Tropics 1(4), 143–257.
  • 30. Kusumaningtyas M.A., Hutahaean A.A., Fischer H.W., Pérez-Mayo M., Ransby D., Jennerjahn T.C. 2019. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar. Coast. Shelf Sci. 218, 310–323.
  • 31. Li N., Chen P., Qin C. 2015. Density, stronge and distribution of carbon in mangrove ecosystem in Guangdong’s coastal areas. Asian Agric. Res. 7(2), 62–65.
  • 32. Magurran A.E. 1991. Ecological diversity and its measurement (2nd ed.). London: Chapman and Hall.
  • 33. Murdiyarso D., Purbopuspito J., Kauffman J.B., Warren M.W., Sasmito S.D., Donato D.C., et al. 2015. The potential of Indonesian mangrove forests for global climate change mitigation. Nature Clim. Change 5, 1089–1092.
  • 34. Nellemann C., Corcoran E., Duarte C.M., Valdés L., De Young C., Fonseca L., et al. 2009. Blue carbon: a rapid response assessment. GRID-Arenda: United Nations Environment Programme.
  • 35. Noor Y.R., Khazali M., Suryadiputra I.N.N. 1999. Guide to introduction of mangroves in Indonesia. Bogor: PHKA/Wetland International-Indonesia Programme (in Indonesian).
  • 36. Pendleton L., Donato D.C., Murray B.C., Crooks S., Jenkins W.A., Sifleet S., et al. 2012. Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLoS ONE 7(9), e43542.
  • 37. Rumahorbo B.T., Keiluhu H.J., Hamuna B. 2019. The economic valuation of mangrove ecosystem in Youtefa bay, Jayapura, Indonesia. Ecological Question 30(1), 47–54.
  • 38. Rumahorbo B.T., Hamuna B., Keiluhu H.J. 2020. An assessment of the coastal ecosystem services of Jayapura City, Papua Province, Indonesia. Environ. & Socio-Econ. Stud. 8(2), 45–53.
  • 39. Sintayehu D.W., Belayneh A., Dechassa N. 2020. Aboveground carbon stock is related to land cover and woody species diversity in tropical ecosystems of Eastern Ethiopia. Ecological Processes 9, 37.
  • 40. Syafruddin Y.S., Mahdi M., Yuerlita Y. 2018. Estimation of blue carbon stocks at tree level in Pulau Cawan and Bekawan Villages, Mandah District, Riau Province. Jurnal Spasial 2(5), 54–62 (in Indonesian).
  • 41. Tomlinson P.B. 1986. The botany of mangroves. Cambridge: Cambridge University Press.
  • 42. Vinh T.V., Marchand C., Linh T.V.K., Vinh D.D., Allenbach M. 2019. Allometric models to estimate above-ground biomass and carbon stocks in Rhizophora apiculate tropical managed mangrove forests (Southern Viet Nam). Forest Ecol. Manag. 434, 131–141.
  • 43. World Agroforestry Center. 2017. Wood density. http://db.worldagroforestry.org//wd
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8682389-c0ca-413a-b5a5-3c4ae5b141b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.