PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multi-objective optimization with adjusted PSO method on example of cutting process of hardened 18CrMo4 steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja wielokryterialna skorygowaną metodą PSO na przykładzie procesu skrawania stali 18CrMo4 w stanie zahartowanym
Języki publikacji
EN PL
Abstrakty
EN
In this paper a Modified Particle Swarm Optimization (PSO) method for multi-objective (MO) problems with a discrete decision space is proposed. In the PSO method the procedure to determine inertia weight, learning factor and social factor is modified. In addition, both an elitism strategy and innovative deceleration mechanism preventing the particles from going beyond the limits of decision space are introduced. The proposed approach has been applied to a series of currently used test functions as well as to optimization problems connected with finish hard turning operation, where the obtained results have been compared with those obtained by means of Genetic Algorithms (GA). The results indicate that the proposed approach is relatively quick, and thus it is highly competitive with other optimization methods. The authors have obtained a very good diversity, convergence and a maximum range of the Pareto front in the criteria space. In order to assess the quality of the generated Pareto set for each of presented examples, a rating has been determined based on the entropy measurement and inverted generational distance (IGD).
PL
W pracy zaproponowano zmodyfikowaną metodę optymalizacji wielocząsteczkowej (PSO) dla problemów optymalizacji wielokryterialnej z dyskretną przestrzenią decyzyjną. W metodzie PSO zmieniono sposób określania momentu bezwładności, współczynnika uczenia oraz współczynnika społecznego. Dodatkowo wprowadzono elitaryzm oraz innowacyjny mechanizm hamowania cząstek chroniący je przed przekraczaniem dopuszczalnych granic przestrzeni decyzyjnej. Zaproponowane podejście zostało zweryfikowane na szeregu aktualnych funkcjach testowych oraz problemie optymalizacji procesu skrawania stali 18CrMo4 w stanie zahartowanym, gdzie porównano je z wynikami uzyskanymi za pomocą algorytmów genetycznych (GA). Uzyskane wyniki wskazują, że zaproponowane podejście jest względnie szybkie i wysoce konkurencyjne w stosunku do innych metod optymalizacji. Autorzy uzyskali bardzo różnorodne, zbieżne i w pełnym zakresie przebiegi frontu Pareto w przestrzeni kryteriów. W celu oceny jakości wygenerowanego zbioru Pareto dla każdego z prezentowanych przykładów wyznaczono ocenę opartą na pomiarze entropii oraz wskaźnika jakości IGD.
Rocznik
Strony
236--245
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Department of Manufacturing Technology and Automation University of Bielsko-Biala, 43-309 Bielsko-Biała, ul. Willowa 2, Poland
autor
  • Department of Manufacturing Technology and Automation University of Bielsko-Biala, 43-309 Bielsko-Biała, ul. Willowa 2, Poland
Bibliografia
  • 1. Aleti A. Quality Assessment of Multiobjective Optimisation Algorithms in Component Deployment. Proceedings of ESEC/FSE Doctoral Symposium, Amsterdam 2009.
  • 2. Baskar N, Asokan P, Saravanan R, Prabhaharan G. Optimization of Machining Parameters for Milling Operations Using Non-conventional Methods. International Journal of Advanced Manufacturing Technology 2005; 25: 1078-1088.
  • 3. Chakraborty PD, Gourab GR, Ajith A. On convergence of the multi-objective particle swarm optimizers. Information Sciences 2011; 181: 1411-1425.
  • 4. De Carvalh AB, Pozo A. Measuring the convergence and diversity of CDAS Multi-Objective Particle Swarm Optimization Algorithms: A study of many-objective problems. Neurocomputing 2012; 75: 43-51.
  • 5. Durillo JJ, García-Nieto J, Nebro AJ, Coello Coello CA, Luna F, Alba E. Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. Proceedings of the 5th International Conference EMO, Lectures in Computer Science 2009; 5467: 495-509.
  • 6. Erfani T, Utyuzhnikov SV. Directed Search Domain: A Method for Even Generation of Pareto Frontier in Multiobjective Optimization. Journal of Engineering Optimization 2011; 43: 1-18.
  • 7. Fasting J. Multi-objective optimization: Elitism in discrete and highly discontinuous decision spaces. University of Skӧvde, DV722A – Thesis Project in Informatics 2011.
  • 8. Farhang-Mehr A, Azram S. Entropy-based multi-objective genetic algorithm for design optimization. Structural and Multidisciplinary Optimization 2002; 24: 351-361.
  • 9. Karpat Y, Özel T. Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particie swarm optimization. International Journal of Advanced Manufacturing Technology 2007; 35: 234-247.
  • 10. Kaveh A, Laknejadi K. A novel hybrid charge system search and particle swarm optimization method for multi-objective optimization. Expert Systems with Applications 2011; 38: 15475-15488.
  • 11. Kennedy J, Eberhart R. Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks 1995; 4: 1942-1948.
  • 12. Kunstfeld T, Haas W. Shaft surface manufacturing methods for rotary shaft lip seals. Sealing Technology 2005; 7: 5-9 .
  • 13. Li H, Zhang Q. Multiobjective Optimization Problems with Complicated Pareto Sets, MOEA/D and NSGAII. IEEE Trans. Evolutionary Computations 2009; 13: 284-302.
  • 14. Liu LL, Zhao GP, Young SS, Young YJ. Integrating theory of constraints and particle swarm optimization in order planning and scheduling for machine tool production. The international Journal of Advances Manufacturing Technology 2011; 57: 285-296.
  • 15. Magnus E, Pedersen H. Good Parameters for Particle Swarm Optimization. Hvass Laboratories Technical Report no. HL1001 2011.
  • 16. Moslemi H, Zandieh M. Comparisons of some improving strategies on MOPSO for multi-objective (r, Q) inventory system. Expert Systems with Applications 2011; 38: 12051-12057.
  • 17. Nebro AJ, Durillo JJ, García-Nieto J, Coello Coello C A, Luna F, Alba E. SMPSO: A New PSO-based Metaheuristic for Multi-objective Optimization. IEEE Symposium on Computational Intelligence in Multicriteria Decision-Making 2009; 66-73.
  • 18. Osyczka A, Kundu S. A modified distance method for multicriteria optimization using genetic algorithms. Computers & Industrial Engineering 1996; 30: 871-882.
  • 19. Poli R. An Analysis of Publications on Particle Swarm Optimization Applications. Technical Report CSM-469. Department of Computer Science, University of Essex 2007.
  • 20. Poli R. Analysis of the Publications on the Applications of Particle Swarm Optimization. Journal of Artificial Evolution and Applications 2008; 2008.
  • 21. Poli R, Kennedy J, Blackwell T. Particle Swarm Optimization. An Overview. Swarm Intelligence 2007; 1: 33-57.
  • 22. Pradhan PM, Panda G. Solving multiobjective problems using cat swarm optimization. Expert Systems with Applications 2012; 39: 2956-2964.
  • 23. Pytlak B. The influence of cutting parameters on the tool wear and cutting forces during turning of hardened 18HGT steel. Advances In Manufacturing Science and Technology 2007; 31: 37-53.
  • 24. Pytlak B. Multicriteria optimization of hard turning operation of the hardened 18HGT steel. The International Journal of Advanced Manufacturing Technology 2010; 49: 305-312.
  • 25. Reyes-Sierra M, Coello Coello C A. Multi-Objective Particle Swarm Optimizers: A Survey of the State-of-the-Art. International Journal of Computational Intelligence Research 2006; 2: 287-308.
  • 26. Saravanan R, Siva Sankar R, Asokan P, Vijayakumar K, Prabhaharan G. Optimization of cutting conditions during continues finished profile machining using non-traditional techniques. International Journal of Advanced Manufacturing Technology 2005; 26: 30-40.
  • 27. Zhang Q, Li H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 2007; 11: 712-731.
  • 28. Zhang Y, Gong DW, Ding ZH. Handling multi-objective optimization problems with a multi-swarm cooperative particle swarm optimizer. Expert Systems with Applications 2011; 38: 13933-13941.
  • 29. Zitzler E, Knowles J, Thiele L. Quality Assessment of Pareto Set Approximations. In Branke J, Deb K, Miettinen K, Slowinski R. editors, Multiobjective Optimization: Interactive and Evolutionary Approaches 2008; 373-404.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8625667-1cd3-4d39-ac5b-b201eb966491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.