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of cutting process of hardened 18CrMo4 steel

Optymalizacja wielokryterialna skorygowaną metodą PSO 
na przykładzie procesu skrawania stali 18CrMo4  

w stanie zahartowanym*
In this paper a Modified Particle Swarm Optimization (PSO) method for multi-objective (MO) problems with a discrete decision 
space is proposed. In the PSO method the procedure to determine inertia weight, learning factor and social factor is modified. In 
addition, both an elitism strategy and innovative deceleration mechanism preventing the particles from going beyond the limits of 
decision space are introduced. The proposed approach has been applied to a series of currently used test functions as well as to 
optimization problems connected with finish hard turning operation, where the obtained results have been compared with those 
obtained by means of Genetic Algorithms (GA). The results indicate that the proposed approach is relatively quick, and thus it is 
highly competitive with other optimization methods. The authors have obtained a very good diversity, convergence and a maxi-
mum range of the Pareto front in the criteria space. In order to assess the quality of the generated Pareto set for each of presented 
examples, a rating has been determined based on the entropy measurement and inverted generational distance (IGD).

Keywords: hard turning, particle swarm optimization (PSO) method, evolutionary computations, multi-objective 
optimization, entropy.

W pracy zaproponowano zmodyfikowaną metodę optymalizacji wielocząsteczkowej (PSO) dla problemów optymalizacji wielo-
kryterialnej z dyskretną przestrzenią decyzyjną. W metodzie PSO zmieniono sposób określania momentu bezwładności, współ-
czynnika uczenia oraz współczynnika społecznego. Dodatkowo wprowadzono elitaryzm oraz innowacyjny mechanizm hamowa-
nia cząstek chroniący je przed przekraczaniem dopuszczalnych granic przestrzeni decyzyjnej. Zaproponowane podejście zostało 
zweryfikowane na szeregu aktualnych funkcjach testowych oraz problemie optymalizacji procesu skrawania stali 18CrMo4 w 
stanie zahartowanym, gdzie porównano je z wynikami uzyskanymi za pomocą algorytmów genetycznych (GA). Uzyskane wyniki 
wskazują, że zaproponowane podejście jest względnie szybkie i wysoce konkurencyjne w stosunku do innych metod optymalizacji. 
Autorzy uzyskali bardzo różnorodne, zbieżne i w pełnym zakresie przebiegi frontu Pareto w przestrzeni kryteriów. W celu oceny 
jakości wygenerowanego zbioru Pareto dla każdego z prezentowanych przykładów wyznaczono ocenę opartą na pomiarze entropii 
oraz wskaźnika jakości IGD.

Słowa kluczowe: toczenie na twardo, metoda optymalizacji wielocząsteczkowej (PSO), obliczenia ewolucyjne, 
optymalizacja wielokryterialna, entropia.

1. Introduction

The search of optimal decision poses a problematic issue from 
the perspective of many, often conflicting criteria. Usually, the search 
results in a large set of solutions. Typical methods of single criterion 
optimization usually give one solution in a single run of the calcula-
tion process, and therefore such methods are useless in multi-objec-
tive optimization. In order to obtain many solutions in a single run of 
calculation process the unconventional methods must be employed. 
However, only a few of these make it possible to obtain an evenly 
distributed, coherent and complete set of solutions.

Nowadays, the most popular of these methods are based on evolu-
tionary techniques; Genetic Algorithms (GA) in particular. Generally, 
these techniques are based on metaheuristics, improving the current 
situation of an individual in the population, increasing its chances of 
survival and/or enabling it to inherit the genetic code. The Particle 
Swarm Optimization (PSO) method is one of those techniques. It has 
become widely accepted, since it’s introduction in 1995 [11] and is 
used in many fields [19].

PSO has also become the major alternative for GA in the area 
of multi-objective optimization. The comparison to genetic algorithm 
and ant colony optimization algorithm indicates that PSO is more ef-
fective than the others because of its faster convergence rate [14]. The 
number of publications describing the use of PSO has grown expo-
nentially for the last few years [20]. The success of this method results 
from its intuitive nature, the algorithm which is easy to use for pro-
gramming, and the fact that it is liable to modification, which makes it 
an excellent tool for experimental research. Reyes-Sierra and Coello 
Coello [25] have provided a complete taxonomy of existing MOP-
SOs’ algorithms. They studied the main features of MOPSOs such as: 
the existence of an external archive for non-dominated solutions, the 
election strategy of non-dominated solutions as the leaders guiding 
the swarm, the neighbourhood topology, and the existence or non-ex-
istence of a mutation operator. During the past few years, several effi-
cient multi-objective variants of PSO have been proposed. Interesting 
proposals for improving the original PSO algorithm appear every year 
[21]. More than thirty different Multi-Objective Particle Swarm Opti-
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mizers (MOPSOs) have been described in the literature [5]. New ap-
proaches are still being put forward, some focusing on the successful 
and improved results achieved by the basic algorithm MOPSO [16]. 
Zhang et al. [28] proposed a new multi-swarm cooperative multi-ob-
jective particle swarm optimization algorithm. To better its perform-
ance, several improved techniques such as the Pareto dominance-
based species technique, the escape strategy of mature species, and 
the local MOPSO algorithm have also been introduced. The proposed 
algorithm can produce solution sets that are highly competitive as far 
as the convergence, diversity, and distribution are concerned. Kaveh, 
and Laknejadi [10] proposed a hybrid method which is a combina-
tion of the particle swarm method and a recently developed algorithm 
charge system search (CSS). Combining the proposed method with a 
mutation operator and particle redistribution strategy strengthens the 
search ability of the proposed algorithm. Magnus and Pedersen [15] 
suggest a table of PSO parameters which may be used by a researcher 
in the first place when optimizing new problems. Chakraborty et al. 
[3] present an analysis of the general Pareto-based MOPSO and find 
conditions on its most important control parameters (the inertia factor 
and acceleration coefficients) that govern the convergence behaviour 
of the algorithm to the optimal Pareto front in the objective function 
space. Many multi-objective optimization problems in real world en-
gineering applications involve discrete and/or discontinuous param-
eters [7].

We think that the three following features have a significant im-
pact on the efficiency of MOPSO: the control method of approach and 
the attempts to exceed the limits of decision space by the particles, 
consideration of continuous or discrete decision space, and control of 
the movement speed of particles.

A quality assessment of the Pareto front generated during the 
multi-objective optimization is not easy [1]. There are many differ-
ent approaches here and their wider description can be found in the 
work [29]. In order to compare effectiveness of various approaches, 
special tests have been developed. Usually, this assessment includes 
three aspects: convergence meant as the minimum distance between 
adjacent solutions on the Pareto front, diversification understood as a 
uniform distribution of the solutions in criteria space, and a maximum 
range of Pareto front in the criteria space. A suitably chosen metric 
of decision space has a crucial meaning for the correct assessment in 
reference to the first and the second aspect. De Carvalho and Pozo [4] 
performed an empirical analysis of measure by means of three quality 
indicators (generational distance, inverted generational distance and 
spacing) to examine how the many-objective technique named control 
of dominance area of solutions (CDAS) affects the convergence and 
diversity of MOPSO algorithms. Also Pradhan and Panda [22] used 
some performance metrics, such as: set coverage metric, generational 
distance, maximum Pareto-optimal front error, spacing and spread.

One of the main issues dealt with by the researchers seeking ef-
fective, intelligent methods for multi-objective optimization is how to 
obtain a complete and coherent set of Pareto solutions. A current qual-
ity assessment of the Pareto front may serve as a determinant of its 
proper shape. The Entropy-based Multi-Objective Genetic Algorithm 
(E-MOGA) method, which strongly improves the convergence and 
uniformity of the Pareto front in comparison to the Multi-Objective 
Genetic Algorithm (MOGA), can serve as an example here. To assess 
the quality of solutions, the approach described in this work also uses 
two forms of entropy: external and internal, as well as inverted gen-
erational distance (IGD). This approach does not modify the method 
of entropy calculation, but it makes the comparison of different tests 
possible. Our research confirms the following conclusion: “a solution 
set with a higher entropy is spread more evenly throughout the feasi-
ble region and provides a better coverage of the space” [8].

In practical problems the decision space is limited by technical ca-
pabilities. The limit values are often optimal. Therefore, the proposed 
PSO algorithm approach has a built-in mechanism of the particle de-

celeration, in order to prevent them from exceeding the limits of deci-
sion space by its better penetration of the values near the boundary. In 
industry the decision maker consider the most often a discrete deci-
sion space. In design, he is usually able to analyse only a very limited 
number of solutions [6]. A continuous decision space is only relevant 
for theoretical consideration. Therefore, the proposed approach takes 
into account the position change of a particle in one direction only as 
a multiple of some fixed discrete value.

The speed control of particles movement is one of the main, but 
little explored parameter influencing the efficiency of the PSO al-
gorithm. Nebro et al. [17] have proposed a new MOPSO algorithm 
which includes a velocity constriction mechanism. In our approach, 
as described below, heuristics strategy has also been used for the par-
ticles‘ speed control.

2. Methodology

Let us imagine N-dimensional, discrete space of decision-making, 
in which each point of the space is represented by a vector x. Each 
component xi of the vector x has the specified range of variation ΔLi, 
corresponding to the interval [Li

-, Li
+], and a constant step of discre-

tization di in the range of the variation. The discrete area of decision-
making is dictated with the practical reasons in mind, because in real-
ity, the designer determines the precision of the settings. Realization 
of the PSO method in discrete space somewhat complicates the algo-
rithm. On the other hand, it eliminates oversized concentrations of 
solutions in a certain areas of the Pareto front, which tend to elongate 
the calculation process. Due to the fact that individual ranges of the 
variation can differ from one another considerably, which results in 
differences di, it was assumed that di creates a new unit for the given 
dimension. This assumption establishes an appropriate metric to cal-
culate the distance between the points in the decision space and at the 
same time enables the quality assessment of the generated Pareto set, 
by measuring the entropy.

Formally, the multi criteria optimization problem can be expressed 
in the following way: we require a vector x*=[x1

*, x2
*, ..., xN

*]T, which 
satisfies:
K inequality constraints

	 gk x( ) ≥ 0   for   k=1, 2, ..., K	 (1)

and M equality constraints

	 hm x( ) = 0    for   m=1, 2, ..., M   and   M<N	 (2)

and optimizes the vector of the objective function f(x)=[f1(x), f2(x), ..., 
fI(x)]T, where x=[x1, x2, ..., xN]T is the vector of decision variables.

The PSO method is often subjected to various modifications. One 
of the questions that researchers ask themselves is: how should the so-
cial factor in the generation of successive positions of the particle be 
taken into account? In case of a single criterion optimization, one can 
choose the movement in the direction of the best located neighbour 
in a specified surrounding of the analyzed particle, or the movement 
towards the best individual from the whole population. In case of 
multiobjective optimization, one can additionally select a movement 
toward the Pareto front. In this paper a few variant approaches were 
tested. The best results were achieved when the movement toward the 
nearest located solution on the Pareto front had been chosen.

In the canonical version of PSO, a particle is associated with the 
position attribute, the velocity attribute and the individual experience 
attribute. The position of a particle is always updated in every step 
using the equation (3)

	 iii vxx += 0
	 (3)
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and the velocity is updated in the following way:

	 v w v c r x x c r x xi i i
bp

i i
gb

i= ⋅ + ⋅ ⋅ −( ) + ⋅ ⋅ −( )0
1 1 2 2 	 (4)

where: xi
0 – i-th component of the position vector in the previous step, 

vi
0 – i-th component of the velocity vector in the previous step, w – in-

ertia weight, c1, c2 – acceleration coefficients, r1; r2∈[0,1] are random 
values, xi

pb – best particle position, xi
gb – best global position.

In multi-objective algorithms, a set containing a representation of 
all non-dominated solutions (leaders) is maintained.

The general structure of code of the proposed algorithm is shown 
as follows:
BEGIN

Initialize Swarm
Initialize Particles_Best
Initialize Leaders_archive
FOR t=1 to Number_of_Iteration

		  FOR p=1 to Population_Size
			   Find_Leaderp
			   Move_Particlep
			   Evaluate_new_position_of_Particlep
			   Update_Particle_Bestp
			   IF new_Leader=TRUE
				    Update_Leaders_Archive
			   ENDIF
		  NEXT p
	 NEXT t
	 Output_Leaders_Archive
END
where, t denotes the generation index, p denotes particle index.

The proposed approach to determination of the Pareto front with 
the PSO method consists of the following steps:

Step 1. Generating of the initial population of particles. For each 
particle p=1, 2, …, Npop The components of the decision variables 
vector of xp and the initial speed vector vp for i-the dimension of the 
decision space are generated randomly:

	
x L d L

v
ip i i i

ip

= + ⋅ ⋅( )
= ⋅ −







− round ” rand

rand

( )

( )2 1
   for   i=1, 2, …, N	 (5)

Meanwhile, the position of the particle in the criteria space (fit-
ness space) is calculated bestp=[f1(xp), f2(xp), ..., fI(xp)]T, and analy-
sis regarding the location of the solution against the Pareto front is 
performed. The location generated in this step is stored as the bestp, 
which means the best position of the particle p achieved up to now. 
The Initial Pareto front is determined during this step.

Step 2. Accomplishment of successive iterations during which the 
particles are moving in the decision space. During the next iterations, 
the course of the Pareto front is being constantly modified if necessary.

What follows for each particle p is:
Step 2.1. Calculation of the distance dp

f (Fig. 1) of the particle p 
from the current Pareto Set (from the current leader for the particle 
p):

	 d d d dp
f f f

L
f
p

= 





min , , ...,1 2 	 (6)

where:	       d
x x

dl
f i i

f

ii

N
=

−











=

∑
2

1
   for   l=1, 2, ..., Lp	 (7)

where: xi – current location of the particle in the i-dimension, xi
f – the 

location of the nearest point on the forehead of Pareto (leader) in the 
i-dimension.

Step 2.2. Determining coefficients w, c1, c2, (Fig. 2) that are used 
for calculation of velocity components of particle p motion. The co-
efficient w is actually the weight, and it is taken into account when 
considering the current direction of particle motion. In case of the 
coefficient w, its value is set as a reference value and is determined at 
constant level equal to 0.5. The coefficient c1 decides how closely the 
particle will try to return to its the best position. It was assumed that 
in the first phase of iterations this coefficient will play a decisive role, 
guaranteeing penetration of the decision space by the particle near its 
current location. In the final phase of iterations this coefficient reaches 
the value of 0, because the main task in this phase is to direct all parti-
cles near to the Pareto front. The coefficient c2 takes into account the 
social impact of the particle, enabling it to choose the direction of the 
particle’s movement toward better located particles, especially those 
on the Pareto front. In the proposed approach, the partial components 
of particle movement associated with the coefficient c2 point at the 
shortest way toward the Pareto set. In the first iteration cycles the so-
cial impact is ignored, allowing the particle to move in random direc-
tions and thus better penetrate its environment. In the second phase, 
the social coefficient becomes decisive. In the presented approach the 
oscillation of the coefficient c2 value, was used so as to enable a par-
ticle to temporarily abandon the close surrounding of the Pareto set. 
Therefore the particle can leave the Pareto set and penetrate the area 
near to the Pareto set better, and consequently its further movement 
in the right direction is possible. To determine current values of the 
coefficients, the following formulas were adopted:

	 w const= =0 5. 	 (8)

	 c
e

q Nq
1 20 0 5

1 1
= −

− −( ).
	 (9)

	 c
q N

e

q
q Nq

2 10 0 5

0 5 0 5 34 5

1
=

+ ⋅ ( )
+

− −( )
. . cos .

.
	 (10)

where:	 q – number of successive iteration, Nq – number of all 	
	 iterations.

Step 2.3. Determining the particle deviation dp
b from its the best 

position. It is calculated from the formula:

	 d x x
dp

b i i
b

ii

N
=

−











=
∑

2

1

	 (11)

where:	 xi
b – i-th component of the best position of particle so far.

Step 2.4. Determining directional vector components for the best 
particle position so far:

	 p r x x
d

i
b i

b
i

p
b= ⋅
−

1    for   i=1, 2, …, N	 (12)

where:	 r1=rand( ) – random number, the same for all components.
Step 2.5. Determining directional vector components of the parti-

cle p for the Pareto set (leader):



Eksploatacja i Niezawodnosc – Maintenance and Reliability Vol.16, No. 2, 2014 239

Science and Technology

	 p r
x x

di
f i

f
i

p
f= ⋅
−

2    for   i=1, 2, …, N	 (13)

where:	 r2=rand( ) – random number, the same for all components.
Step 2.6. Calculating the elements of movement speed vector:

	 v w v c p c pi i i
b

i
f= ⋅ + ⋅ + ⋅0

1 2    for   i=1, 2, …, N	 (14)

where:	 vi
0 – i-th component of the speed vector in the previous 	

	 step.
Step 2.7. The normalization of the movement speed vector com-

ponents:

	
v v

v
i
n i

i
i

N=

=
∑ 2

1

   for   i=1, 2, …, N	 (15)

Step 2.8. Correction of the particle speed resulting from the pos-
sibility of exceeding of the permitted movement area. The speed cor-
rection is carried out by the inhibition mechanism of the particle ac-
cording to the following formulas:

	 dv a v x L L v L L
i i i

n
i

i i
i
n i i= ⋅ ⋅ −

+
− ( ) ⋅ −











+ − + −
abs

2 2
sgn 	 (16)

where: ai – coefficient of movement speed of the particle. This coef-
ficient should be chosen in such a way to guarantee similar mobility 
of the particles in all directions. The coefficient value is chosen from 
the range of (0,1].

Step 2.9. Calculation of new components of particle position:

	 x d x dv
di i

i i
i

' = ⋅
−







round    for   i=1, 2, …, N	 (17)

Step 2.10. Generation of a new location of the particle in the cri-
teria space. In case when the criteria are not within the assumed con-
straints, the next part of this step is omitted. Checking whether the 
new position of the particle in the modified metric is the best position 
so far. If the current particle position is located on the Pareto front, 
such position is added to the Pareto set and all the solutions which are 
predominated by the new solution are removed.

Step 2.11. In case of failure to achieve desired number of itera-
tions, return to step 2.1.

The term “entropy” appears in many areas of science and is as-
sociated with the assessment of disorder or arrangement. Individual 
entropy treated as the amount of information (Hartley 1928) can be 
determined by the formula: hi=−ln(pi), where pi – the probability of 
an event. Absolute entropy of n events is the weighted arithmetic av-
erage of the amount of information received with the occurrence of 
individual events, where the probability of these events constitute the 
weights H=−∑(pi∙ln(pi)) (Shannon 1948). In turn, relative entropy Hr 
is expressed by the formula Hr=H/ln(n).

In the paper the two different definitions of entropy are used: ex-
ternal and internal. The external entropy is measured by means of as-
sessing how close a given set is to the reference set of solutions. In 
this case, as the reference set we chose the ideal Pareto set, i.e. the 
complete set of solutions possible to be achieved in a given discrete 
space of the decision. To meet this requirement the authors calculated 

the reference Pareto set. The generated Pareto set was used as the set 
comparable with the calculated set. However, by the internal entropy 
we mean the measure of entropy defined on the generated Pareto set, 
taking into account mutual distances of particular solutions from their 
nearest neighbours in this set. In practice, we have a possibility of 
calculating only the internal entropy. The objective of this work is to 
show, however, that when the internal entropy reaches a sufficiently 
high level, the external entropy reaches a satisfactory level, too.

Assess the external entropy one should define the elements’ inter-
action function s from the set S with the element f from the set F. It 
was assumed, that this function (Fig. 3) is expressed by the formula:

	 I ef
s

b rf s=














− ⋅( )→max
2

	 (18)

where:	 rf→s is the distance between the element f and the element s 
measured in the assumed metric decision space, b – coefficient con-
trolling the range of impact, in conducted tests was established as 1.

In practice, it is sufficient to find the distance rf→s from the current 
Pareto set in the decision space for each solution f belonging to ideal 
Pareto front F.

	 r
x x

dr s
i
s

i
f

ii

N
→

=
=

−





























∑min
2

1
	 (19)

where:	 f∈F, s∈S.
To be able to compare different experiments’ results, it is prefer-

able to normalize values of the influence function, to have their sum 
equal 1. As a result, the maximum entropy can amount to 1:

	 I
I

If
n f

f
f

=
∑

	 (20)

Hence, the quality assessment of current Pareto front in the form 
of external entropy is:

	 H

I I

n
e

f
n

f
n

f

f
=

− ⋅ ( )
( )

∑ ln

ln
	 (21)

where:	 nf – the power of the set F.
As mentioned above, an ideal Pareto front remains unknown in 

the course of practical calculations. Hence, actual evaluation of the 
quality of the Pareto front should be determined by the measure of the 
internal entropy Hi. The Agglomeration method was used for the cal-
culation of the Hi. In the first step, a randomly chosen solution from 
the set S is moved to initially empty set S’ . In the following steps, the 
next solutions s∈S (which are located in the nearest distance to the set 
S’ in the decision space) are moved to the set S’. Figure 4 illustrates 
the method of calculating mutual distances in the decision space. At 
the same time, the distance Ds of a transferred solution to the set S’ is 
written on the stack during each step.

The influence function of the solution s onto neighbouring solu-
tions takes the form:

	 I es
b Ds= − −( )1 2

	 (22)
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where: it was assumed that b=1.
After normalization:

	 I I
Is

n s
s

s

=
∑

	 (23)

Internal entropy of the set S is calculated by the formula:

	 H
I I

n
i

s
n

s
n

s
s

=

− ⋅ ( )
−( )

−
∑ ln

ln
1

1
	 (24)

where: 	 ns – the power of the set S.
For example, the value of internal entropy for the sequence of 

0-1-2-4-5 (Fig. 4).
where:	 I0→1=I0→2=1, I2→4=0.135, I4→5=0.035, 0-1-2-4-5 chain 

length is 2.17, In
0→1=In

0→2=0.46, In
2→4=0.062, In

4→5=0.016, 
is:

		  Hi=–(0.46ln(0.46)+0.46ln(0.46)+0.062ln(0.062)+0.016(ln(
0.016))/ln(4)=0.694

Additionally, the inverted generational distance (IGD) is used in as-
sessing the performance of the algorithms in our experimental studies.

3. Experiments and results

3.1.	 Test functions

The modified particle swarm optimization method proposed here 
for the multi-objective problems has been applied to the solve several 
currently used test functions.

The first of the test problems was presented in the paper [13]. The 
objective functions for the particular criteria of the optimization were 
described by the formulas:

	

f x
J

x x j
n

f x
J

x

j
j J

j

1 1
1

1

2

2 1
2

2 6

1 2

1

= + − +















 →

= − +

∈
∑ sin minπ π

−− +















 →

∈
∑ sin min6 1

2

2

π πx j
nj J

	 (25)

where:	 J1={j│j is odd and 2≤j≤n} and J2={j│j is even and 2≤j≤n}, 
and the decision space Ω=[0,1]×[–1,1]n–1 and n=3.

After 500 iterations 251 solutions were found and they are pre-
sented in the Figures 5 and 6. Additionally, the Figure 7 shows a graph 
of entropy values, power of Pareto set and IGD (Inverted Genera-
tional Distance) in the function of iteration.

The second test problem was also presented in the paper [13]. 
The objective functions for the particular optimization criteria were 
expressed by the formulas:
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where:	 J1={j│j is odd and 2≤j≤n} and J2={j│j is even and 2≤j≤n}, 
and the decision space Ω=[0,1]×[–1,1]n–1 and n=3.

500 iterations found 204 solutions, which are presented in the 
Figures 8 and 9 for d1=d2=d3=0.01. There were 491 solutions for 

d1=d2=d3=0.002 and they are presented in the Figures 10 and 11. 
Additionally, the Figures 12 and 13 show a graph of entropy values, 
power of the Pareto set and IGD in the function of iteration for values 
of d1=d2=d3=0.01 and 0.002 accordingly.

The third test problem was presented in the work [27]. The objec-
tive functions for the particular optimization criteria were described 
by the formulas:
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where:	 x=(x1, …, xn)T∈[0,1]n and n=3.
After 500 iterations we found 134 solutions, which are presented 

in Figures 14 and 15. Additionally, the Figure 16 shows a graph of 
the entropy values, power of the Pareto set and IGD in the function 
of iteration.

As shown in the above figures, the modified particle swarm opti-
mization algorithm has generated better sets of Pareto solutions (PSO 
solutions) than those presented in the publications cited above and 
in the works [13, 27]. For comparison, in the above figures, an ideal 
Pareto set is presented (all solutions). The analysis of Pareto solution 
sets shows that the PSO method can find the most solutions from the 
ideal Pareto set in a very short time period (after 500 iterations).

3. 2. Multi-criteria optimization of hard turning operation of 
hardened 18CrMo4 steel

In the next step, a modified particle swarm optimization algorithm 
for multi-objective optimization problems has been used for solving 
the problems of multi-objective optimization in finish hard turning 
of hardened steel. The obtained experimental results were compared 
with the results from the work by [24], where GA with Modified Dis-
tance Method (MDM) [18] were used to solve the problem of multi-
objective optimization of hard turning operation.

Technological progress in the area of cutting materials has made it 
possible to machine hardened materials with use of cutting tools with 
specified contour and angles of the edge. However, this operation is 
relatively rare in industry, due to the very high cost of tools made 
of cubical boron nitride (CBN) and the necessity to use the machine 
tools with appropriately high rigidity. Therefore, this operation should 
be performed with the optimal values of cutting parameters and many 
optimization criteria should be taken into account [9]. This will in-
crease profitability and the number of industrial applications.

Hard finish turning operation of hardened (58HRC) 18CrMo4 
steel machined with the use of CBN tools with Wiper geometry was 
subjected to optimization. 18CrMo4 steel (C – 0.18%, Mn – 0.32%, 
Si – 0.31%, P – 0.012%, S – 0.003%, Cr – 1.02%, Ni – 0.14%, Cu 
– 0.28%, Ti – 0.071%) is used for toothed elements. The research in-
cluded: the effect of cutting speed vc=100–200 m/min, feed f=0.1–0.3 
mm/rev, depth of cut ap=0.1–0.2 mm, and length of cutting distance 
L on: unit production cost Kj, time per unit tj, resultant cutting force 
F and selected parameters of the surface roughness: Ra, Rz and Rmax 
[24]. The research was carried out with respect to the machined sur-
face mating with sealing rings (Radial shaft seal), where the following 
parameters are recommended: Ra=0.2–0.8 µm, Rz=1–4 µm i Rmax≤6.3 
µm [12]. On the basis of experimental research results formulas [24] 
were developed for:

unit production cost––  Kj,
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time per unit––  tj,
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resultant cutting force –– F,

	F

v f a Lc p

=

⋅ ⋅ ⋅ ⋅( )−993 402604 0 200600 0 623620 0 660314 0 158012 2
. . . . . ++
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. . . . .v f a Lc p ++
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. . . . .v f a Lc p

 (30)

arithmetical mean of roughness profile ordinates––  Ra,
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 (31)

average, maximal height of roughness from 5 elementary sec-––
tors Rz,
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maximum height of roughness –– Rmax,

	R v f v fmax c c= − − + + +2 775193 0 016948 2 123522 0 000042 5 4306042 2. . . . .
00 028112 0 058322 0 000008. . .v f v f a v a Lc c p c p⋅ − ⋅ ⋅ + ⋅ ⋅

 (33)

In the equations (30)-(33), cutting distance L is present apart from 
cutting parameters. The value L was derived from the dependency 
VBC=g(vc, f, ap, L)=0.2 mm, and was inserted into the above specified 
equations as the constant [23].

As a result of the optimization performed with the use of the mod-
ified PSO method for multi-objective optimization problems, after 50 
iterations a set of non-dominated solutions was obtained as having 
197 solutions and it is presented in Figure 17. For comparison, the set 
of non-dominated solutions obtained with the help of GA with MDM 
is presented as well (Fig. 18). Here the result of performed optimiza-
tion was a Pareto set consisting of 106 non-dominated solutions.

As can be seen, the PSO method has detected much more solu-
tions, and such solutions are better than the ones generated with the 
help of GA with MDM (Fig. 19). This confirms supremacy of the PSO 
over the AG and the opinion expressed in the work [2, 26], where the 
authors compared the PSO method with the ACO, TS, SA, MA, GA 
methods. In each case of turning and milling operations, the PSO has 
proved to be the best for selecting the optimal cutting method.

Figure 19 shows the entropy graph and the power of the Pareto set 
in the function of iteration.

4. Conclusions

In this article, only a discrete space of particle movement is con-
sidered. In practice, we always define the location in a particular di-
mension with a specific, rational accuracy. As has been confirmed by 
experimental studies, the decision space discretization is essential. 
The method proved effective only after discretization. The conducted 
in the work research show that such an approach is correct.

A great number of experiments has been conducted for both con-
stant and variable in time coefficients w, c1 and c2. For the particle 
inertia coefficient determined as the base coefficient (hence its con-
stant value), experiments have been conducted in order to adjust the 
remaining two coefficients correctly. Obviously, these formulas are 
heuristic. They cannot be treated as universal. Nevertheless, we think 
that introduction of oscillation and the reduction of chaos (random-
ness) in successive iterations has a positive effect on efficiency of the 
method. This has been confirmed by the conducted experiments.

The evaluation of determined Pareto front quality is executed by 
the measurment of internal entropy. As pointed out by the performed 
tests, internal entropy at levels greater than 0.9 corresponds to the 
external entropy on a very similar level. Because the external entropy 
for multidimensional multi-objective optimization problems is not 
known, we can refer to the level of the internal entropy, not only as an 
assessment degree of the generated Pareto front, but also as a criterion 
for interrupting the calculation when the internal entropy exceeds a 
certain, satisfactory level. The external and internal entropy show sig-
nificant changes during the calculations, in contrast to the parameter 
of IGD, which stabilizes quickly. The only negative phenomenon here 
is a longer time needed for computation, when the number of solu-
tions on the Pareto front increases. Hence, we should choose appropri-
ate steps of discretization of the di in order to avoid this problem.

Further research connected with the proposed method should tend 
towards the determination of the parameter ai at the appropriate level. 
It has a very large impact on the mobility of particles, which should 
take the referred average interval. It seems that suitable values are 
very closely linked to the specific character of the problems being 
solved. Therefore, it is difficult to determine these values a priori. In-
stead, one should develop a mechanism of its adaptive selection dur-
ing calculations. Another important factor for the effectiveness of the 
PSO method is a suitable choice of ranges in the decision space. In the 
work this issue has not been studied deeply. Nevertheless, on the base 
of the tests performed one can conclude that the appropriate narrow-
ing of the decision space to the range corresponding to the position of 
particles on the Pareto front is very beneficial. When evaluating the 
obtained tests’ results, we can draw the conclusion that the developed 
modified PSO method is highly competitive when compared to the 
previous proposals of the PSO, and should find numerous practical 
applications.
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Fig. 7.	 Values of external and internal entropy, power of Pareto set and IGD in the 
function of iteration for the first test problem for the parameters: Npop=200, 
Nq=500, a=const=0.2, d1=d2=d3=0.01

Fig. 3. Determination of the influence function value

Fig. 1. Leader of particle in discrete decision space

Fig. 2. Changes of w, c1, c2 coefficients value during calculations

Fig. 6.	 Set of Pareto-optimal solutions for the first test problem in the de-
cision space for the parameters: Npop=200, Nq=500, a=const=0.2, 
d1=d2=d3=0.01

Fig. 5.	 Set of Pareto-optimal solutions for the first test problem generated for 
the parameters: Npop=200, Nq=500, a=const=0.2, d1=d2=d3=0.01

Fig. 4. Determination of the distance in 3-dimensional decision space
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Fig. 8.	 Set of Pareto-optimal solutions for the second test prob-
lem generated for the parameters: Npop=200, Nq=500, 
a=const=0.2, d1=d2=d3=0.01

Fig. 9.	 Set of Pareto-optimal solutions for the second test problem 
in the decision space for the parameters: Npop=200, Nq=500, 
a=const=0.2, d1=d2=d3=0.01

Fig. 10.	Set of Pareto-optimal solutions for the second test prob-
lem generated for the parameters: Npop=200, Nq=500, 
a=const=0.2, d1=d2=d3=0.002

Fig. 11.	Set of Pareto-optimal solutions for the second test problem 
in the decision space for the parameters: Npop=200, Nq=500, 
a=const=0.2, d1=d2=d3=0.00

Fig. 12.	Values of external and internal entropy, power of Pareto set 
and IGD in the function of iteration for the second test prob-
lem for the parameters: Npop=200, Nq=500, a=const=0.2, 
d1=d2=d3=0.01

Fig. 13.	Values of external and internal entropy, power of Pareto set 
and IGD in the function of iteration for the second test prob-
lem for the parameters: Npop=200, Nq=500, a=const=0.2, 
d1=d2=d3=0.002
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Fig. 14.	Set of Pareto-optimal solutions for the third test problem gen-
erated for the parameters: Npop=200, Nq=500, a=const=0.2, 
d1=d2=d3=0.002

Fig. 15.	Set of Pareto-optimal solutions for the third test problem in 
the decision space for the parameters: Npop=200, Nq=500, 
a=const=0.2, d1=d2=d3=0.002

Fig. 16.	Values of external and internal entropy values, power of Pareto 
set and IGD in the function of iteration for the third test prob-
lem for the parameters: Npop=200, Nq=500, a=const=0.2, 
d1=d2=d3=0.002

Fig. 17.	Set of Pareto-optimal solutions generated with help of the PSO 
method for the parameters: Npop=200, Nq=50, a=const=0.8, 
d1=1, d2=d3=0.01

Fig. 18.	Set of Pareto-optimal solutions generated with help of the ge-
netic algorithms [24]

Fig. 19.	Values of external and internal entropy, and power of the 
Pareto set in the function of iteration
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