PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the Application of Floating Beds of Macrophites (Vetiveria zizanioides and Phragmites australis), in Pilot Scale, for the Removal of Heavy Metals from Água Forte Stream (Alentejo-Portugal)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The surrounding area of the Roxo stream sub-basin (basin of the Sado River, Portugal) has completely sterile sections, jeopardizing the productivity of the agricultural activities practiced there. This may be due to the inflow of the Água Forte stream, which has characteristics of Acid Mining Drainage (AMD). The objective of this study was to test the efficiency of heavy metal removal from the Água Forte stream using the macrophyte floating bed technology (Vetiveria zizanioides and Phragmites australis) in a pilot plant, monitoring and evaluating the water quality and performance of macrophytes. Two experiments were carried out in 2019 over 6 months (January to June). Both experiments were performed in polyvinyl chloride (PVC) tanks with the nominal capacity of 1 m3 each. The tanks were filled with about 0.8 m3 of water coming from the Água Forte stream, which was renewed monthly. The floating beds consisted in a high-density polyethylene floating system and an organic plant support mat filled with a plant density of 285 plants m-2. The heavy metal removal rates obtained from the Vetiveria zizanioides and Phragmites australis floating bed were Fe = 40%; Zn = 33%; Cu = 23%; Mn = 14% and Fe = 27%; Zn = 19%; Mn = 17%; Cu = 14%; respectively. The order of heavy metals accumulation in Vetiveria zizanioides and Phragmites australis in plant biomass was Fe > Zn > Cu > Mn and Fe > Zn > Mn > Cu, respectively. The growth of Vetiveria zizanioides and Phragmites australis in leaf biomass was 7.1 ± 0.3 cm/month and 2.5 ± 0.0 cm/month and in root biomass 3.8 ± 0.1 cm/month and 4.1 ± 0.1 cm/month, respectively. The growth of macrophytes showed the ability to survive in the AMD-containing waters without severe damage in their external and anatomical morphology, although their growth suffered inhibition. The results suggest that the floating bed technology may be an environmentally sustainable alternative, allowing long-term heavy metal removal.
Rocznik
Strony
153--163
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal
autor
  • Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal
  • Department of Technologies and Applied Sciences, Polytechnic Institute of Beja, Beja, Portugal
Bibliografia
  • 1. Alexandre, L. J. T. (2016). Fitorremediação de Águas Ácidas de Minas. Dissertação apresentada ao Instituto Superior Técnico (UL) para cumprimento dos requisitos necessários para obtenção do grau de Doutor em Engenharia do Ambiente. Obtida a 1 de outubro de 2019 (in portuguese).
  • 2. APHA. (2005). Standard Methods for the Examination of Water and Wastewater, 21st ed.; APHA:Washington, DC, USA, 2005. American Water Works Association/American Public Works Association/Water Environment Federation. https://doi.org/10.2105/AJPH.51.6.940-a.
  • 3. Appelo, C. A. J., & Postma, D. (2004). Geochemistry, groundwater and pollution, second edition. Geochemistry, Groundwater and Pollution, Second Edition. https://doi.org/10.1201/9781439833544.
  • 4. Arivoli, A., Mohanraj, R., & Seenivasan, R. (2015). Application of vertical flow constructed wetland in treatment of heavy metals from pulp and paper industry wastewater. Environmental Science and Pollution Research, 22(17), 13336–13343. https://doi.org/10.1007/s11356–015–4594–4.
  • 5. Ashraf, M., Ahmad, M. S. A., & Ozturk, M. (2010). Plant adaptation and phytoremediation. In Springer (pp. 1–481). https://doi.org/10.1007/978–90–481–9370–7.
  • 6. Ayeni, O., Ndakidemi, P., Snyman, R., & Odendaal, J. (2012). Assessment of Metal Concentrations, Chlorophyll Content and Photosynthesis in Phragmites australis along the Lower Diep River, CapeTown, South Africa. Energy and Environment Research, 2(1), 128–139. https://doi.org/10.5539/eer.v2n1p128.
  • 7. Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicology and Environmental Safety, 74(4), 1057–1064. https://doi.org/10.1016/j.ecoenv.2011.01.018.
  • 8. Bragato, C., Brix, H., & Malagoli, M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environmental Pollution, 144(3), 967–975. https://doi.org/10.1016/j.envpol.2006.01.046.
  • 9. Buosi, A., & Sfriso, A. (2017). Macrophyte assemblage composition as a simple tool to assess global change in coastal areas. Freshwater impacts and climatic changes. Science of the Total Environment, 606, 559–568. https://doi.org/10.1016/j.scitotenv.2017.06.196.
  • 10. Danh, L. T., Truong, P., Mammucari, R., Tran, T., & Foster, N. (2009). Vetiver grass, Vetiveria zizanioides: A choice plant for phytoremediation of heavy metals and organic wastes. International Journal of Phytoremediation, 11(8), 664–691. https://doi.org/10.1080/15226510902787302.
  • 11. Darajeh, N., Idris, A., Truong, P., Abdul Aziz, A., Abu Bakar, R., & Che Man, H. (2014). Phytoremediation potential of Vetiver system technology for improving the quality of palm oil mill effluent. Advances in Materials Science and Engineering, 4, 1–12. https://doi.org/10.1155/2014/683579.
  • 12. Darajeh, N., Truong, P., Rezania, S., Alizadeh, H., & Leung, D. W. M. (2019). Effectiveness of vetiver grass versus other plants for phytoremediation of contaminated water. Journal of Environmental Treatment Techniques, 7(3), 485–500.
  • 13. Golubev, I. A. (2011). Handbook of phytoremediation. Handbook of Phytoremediation (1st ed.).
  • 14. Gorito, A. M., Ribeiro, A. R., Almeida, C. M. R., & Silva, A. M. T. (2017). A review on the application of constructed wetlands for the removal of priority substances and contaminants of emerging concern listed in recently launched EU legislation. Environmental Pollution, 227, 428–443. https://doi.org/10.1016/j.envpol.2017.04.060.
  • 15. Guo, L., & Cutright, T. J. (2014). Effect of citric acid and rhizosphere bacteria on metal plaque formation and metal accumulation in reeds in synthetic acid mine drainage solution. Ecotoxicology and Environmental Safety, 104(1), 72–78. https://doi.org/10.1016/j.ecoenv.2014.02.019.
  • 16. Instituto da Água. (2009). Critérios para a classificação do estado das massas de água superficiais. Ministério Do Ambiente, Ordenamento Do Território e Do Desenvolvimento Regional (in portuguese).
  • 17. Jampeetong, A., Konnerup, D., Piwpuan, N., & Brix, H. (2013). Interactive effects of nitrogen form and pH on growth, morphology, N uptake and mineral contents of Coix lacryma-jobi L. Aquatic Botany, 111, 144–149. https://doi.org/10.1016/j.aquabot.2013.06.002.
  • 18. Joseph, L., Jun, B. M., Flora, J. R. V., Park, C. M., & Yoon, Y. (2019). Removal of heavy metals from water sources in the developing world using low-cost materials: A review. Chemosphere, 229, 142–159. https://doi.org/10.1016/j.chemosphere.2019.04.198.
  • 19. Kabata-Pendias, A. (2010). Trace elements in soils and plants: Fourth edition. Trace Elements in Soils and Plants, Fourth Edition, 1–520. https://doi.org/10.1201/b10158.
  • 20. Kadlec, R. H., & Wallace, S. D. (2009). Treatment Wetlands. Second Edition (2nd ed.).
  • 21. Khellaf, N., & Zerdaoui, M. (2009). Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technology, 100(23), 6137–6140. https://doi.org/10.1016/j.biortech.2009.06.043.
  • 22. Maia, F., Pinto, C., Waerenborgh, J. C., Gonçalves, M. A., Prazeres, C., Carreira, O., & Sério, S. (2012). Metal partitioning in sediments and mineralogical controls on the acid mine drainage in Ribeira da água Forte (Aljustrel, Iberian Pyrite Belt, Southern Portugal). Applied Geochemistry, 27, 1063–1080. https://doi.org/10.1016/j.apgeochem.2012.02.036.
  • 23. Moore, G. E., Burdick, D. M., Peter, C. R., & Keirstead, D. R. (2012). Belowground Biomass of Phragmites australis in Coastal Marshes . Northeastern Naturalist, 19(4), 611–626. https://doi.org/10.1656/045.019.0406.
  • 24. Ning, D., Huang, Y., Pan, R., Wang, F., & Wang, H. (2014). Effect of eco-remediation using planted floating bed system on nutrients and heavy metals in urban river water and sediment: A field study in China. Science of the Total Environment, 485–486(1), 596–603. https://doi.org/10.1016/j.scitotenv.2014.03.103.
  • 25. Nyquist, J., & Greger, M. (2009). A field study of constructed wetlands for preventing and treating acid mine drainage. Ecological Engineering, 35(5), 630– 642. https://doi.org/10.1016/j.ecoleng.2008.10.018.
  • 26. Parnian, A., Chorom, M., Jaafarzadeh, N., & Dinarvand, M. (2016). Use of two aquatic macrophytes for the removal of heavy metals from synthetic medium. Ecohydrology and Hydrobiology, 16(3), 194–200. https://doi.org/10.1016/j.ecohyd.2016.07.001.
  • 27. Sarwar, N., Imran, M., Shaheen, M. R., Ishaque, W., Kamran, M. A., Matloob, A., … Hussain, S. (2017). Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere, 171, 710–721. https://doi.org/10.1016/j.chemosphere.2016.12.116.
  • 28. Srivastava, J., Kalra, S. J. S., & Naraian, R. (2014). Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Applied Water Science, 4(3), 193–202. https://doi.org/10.1007/s13201–013–0142-x
  • 29. Suelee, A. L. (2016). Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Water Contaminated with Selected Heavy Metal. A project report submitted to the Faculty of Environmental Studies, Universiti Putra Malaysia, in partial fulfilment of the requirement for the degree of Bachelor of Environmental Science and Technology.(06/06/ 2019). https://doi.org/https://doi.org/10.3929/ethz-b-000238666.
  • 30. Suelee, A. L., Hasan, S. N. M. S., Kusin, F. M., Yusuff, F. M., & Ibrahim, Z. Z. (2017). Phytoremediation Potential of Vetiver Grass (Vetiveria zizanioides) for Treatment of Metal-Contaminated Water. Water, Air, and Soil Pollution, 228(4), 1–15. https://doi.org/10.1007/s11270–017–3349-x.
  • 31. Truong, P. N. V., Foong, Y. K., Guthrie, M., & Hung, Y.-T. (2010). Phytoremediation of Heavy Metal Contaminated Soils and Water Using Vetiver Grass. In Environmental Bioengineering (pp. 233–275). https://doi.org/10.1007/978–1-60327–031–1_8.
  • 32. Vargas, C., Pérez-Esteban, J., Escolástico, C., Masaguer, A., & Moliner, A. (2016). Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids. Environmental Science and Pollution Research, 23(13), 13521–13530. https://doi.org/10.1007/s11356–016–6430-x.
  • 33. Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chemical Engineering Journal, 290, 232–242. https://doi.org/10.1016/j.cej.2015.12.108.
  • 34. Walker, C., Tondera, K., & Lucke, T. (2017). Stormwater treatment evaluation of a Constructed Floating Wetland after two years operation in an urban catchment. Sustainability (Switzerland), 9(10), 1–10. https://doi.org/10.3390/su9101687.
  • 35. Wang, H., & Jia, Y. (2009). Bioaccumulation of heavy metals by Phragmites australis cultivated in synthesized substrates. Journal of Environmental Sciences, 21(10), 1409–1414. https://doi.org/10.1016/S1001–0742(08)62433-X.
  • 36. Wang, Y., Wen, Y., Li, J. J., He, J., Qin, W. C., Su, L. M., & Zhao, Y. H. (2014). Investigation on the relationship between bioconcentration factor and distribution coefficient based on class-based compounds: The factors that affect bioconcentration. Environmental Toxicology and Pharmacology, 38(2), 388–396. https://doi.org/10.1016/j.etap.2014.07.003.
  • 37. Werner, T. T., Bebbington, A., & Gregory, G. (2019). Assessing impacts of mining: Recent contributions from GIS and remote sensing. The Extractive Industries and Society, 6(3), 993–1012. https://doi.org/10.1016/j.exis.2019.06.011.
  • 38. Xu, X., & Mills, G. L. (2018). Do constructed wetlands remove metals or increase metal bioavailability? Journal of Environmental Management, 218, 245–255. https://doi.org/10.1016/j.jenvman.2018.04.014.
  • 39. Zhang, X., Gao, B., & Xia, H. (2014). Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicology and Environmental Safety, 106, 102–108. https://doi.org/10.1016/j.ecoenv.2014.04.025.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a85f0b7d-71b2-40a6-93a8-d23ecc940292
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.