Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Femoral fractures are frequent in adolescents and children, and most fractures occur within the centre of the bone, typically referred to as the femur shaft. Plate and screws are ideal fixation methods for femoral fractures close to the articular surfaces. When using plates and screws, estimating the load on the plates and screws before starting treatment is important. The primary focus of this paper is the examination of fixation plates utilized in the treatment of femur bone fractures. The study employs the finite element method to conduct this analysis. Initial modelling of the femur bone is executed through the utilization of CATIA V5 software. Subsequently, the investigation transitions to the ANSYS R14.5 environment, where more in-depth analysis is carried out. The modelling of the fracture fixation plates is done on commercially available CAD software CATIA V5. The stress distribution of different biomaterials in the bone plate system is calculated when the system is subjected to compressive loads with varying healing times. Here we have used stainless steel (SS316-L), titanium alloy (Ti6Al4V) and magnesium alloy (AZ31). More focus was given to the magnesium alloy. Here a fracture gap of 1mm gap was taken for analysis. A comprehensive compressive force amounting to 750 N was applied to the bone-plate assembly during the simulation. This force magnitude corresponds to the approximate weight of an average human body.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
261--268
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
- Department of Mechanical Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
autor
- Department of Mechanical Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
autor
- Department of Mechanical Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
autor
- Department of Mechanical Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
autor
- Department of Mechanical Engineering, K. R. Mangalam University, Gurugram 122001, India
autor
- Department of Mechanical Engineering, Harcourt Butler Technical University, Kanpur 208002, India
Bibliografia
- [1] Yousif, A.E., & Aziz M.Y. (2012). Biomechanical Analysis of the human femur bone during normal walking and standing up. IOSR Journal of Engineering, 2(8), 13–19. doi: 10.9790/3021-02851319
- [2] Ganesh, V.K., Ramakrishna, K., & Ghista, D.N. (2005). Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates. Biomedical Engineering, 4(1), 46. doi: 10.1186/1475-925x-4-46
- [3] O’Rourke, D., Johnson, L.J., Jagiello, J., & Taylor, M. (2023). Examining agreement between finite element modelling methodologies in predicting pathological fracture risk in proximal femurs with bone metastases. Clinical Biomechanics (Bristol, Avon), 104, 105931. doi: 10.1016/j.clinbiomech.2023.105931
- [4] Balasubramani, V., Gokul, D., & Gokul, R.K. (2023). Modelling and finite element analysis of fractured femur bone with locking compression plate under fatigue load condition. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.03.437
- [5] Manubolu, V.N., & Reddy, D. (2022). Design aspects of femur bone fractures: A review. Materials Today: Proceedings, 68(6),2676–2681. doi: 10.1016/j.matpr.2022.09.558
- [6] Kalaiyarasan, A., Sankar, K., & Sundaram, S. (2020). Finite element analysis and modeling of fractured femur bone. Materials Today: Proceedings, 22(3), 649−653. doi: 10.1016/j.matpr.2019.09.036
- [7] Manral, A.R., Gariya, N., & Kumar, K N. (2020). Material optimization for femur bone implants based on vibration analysis. Materials Today: Proceedings, 28(4), 2393−2399. doi: 10.1016/j.matpr.2020.04.714
- [8] Fang, R., Ji, A., Zhao, Z., Long, D., & Chen, C. (2020). A regression orthogonal biomechanical analysis of internal fixation for femoral shaft fracture. Biocybernetics and Biomedical Engineering, 40(3), 1277−1290. doi: 10.1016/j.bbe.2020.07.006
- [9] Fouad, H.J. (2011). Assessment of function-graded materials as fracture fixation bone-plates under combined loading conditions using finite element modelling. Medical Engineering & Physics, 33(4), 456−463. doi: 10.1016/j.medengphy.2010.11.013
- [10] Innocenti, B., Bellemans, J., & Catani, F. (2016). Deviations from optimal alignment in TKA: Is there a biomechanical difference between femoral or tibial component alignment? The Journal of Arthroplasty, 31(1), 295−301. doi: 10.1016/j.arth.2015.07.038
- [11] Chandra, G., Pandey, A., & Pandey, S. (2020). Design of a biodegradable plate for femoral shaft fracture fixation. Medical Engineering & Physics, 81, 86−96. doi: 10.1016/j.medengphy.2020.05.010
- [12] Cheng, C.K., Wang, X.H., Luan, Y.C., Zhang, N.Z., Liu, B.L., Ma, X.Y., & Nie, M.D. (2019). Challenges of pre-clinical testing in orthopedic implant development. Medical Engineering & Physics, 72, 49−54. doi: 10.1016/j.medengphy.2019.08.006
- [13] Perren, S.M. (2002). Evolution of the internal fixation of long bone fractures: The scientific basis of biological internal fixation: Choosing a new balance between stability and biology. The Journal of Bone and Joint Surgery. British Volume, 84-B(8),1093−1110. doi: 10.1302/0301-620X.84B8.0841093
- [14] Kim, S.H., Chang, S.H., & Jung, H.J. (2010). The finite element analysis of a fractured tibia applied by composite bone plates considering contact conditions and time-varying properties of curing tissues. Composite Structures, 92(9), 2109−2118. doi: 10.1016/j.compstruct.2009.09.051
- [15] Gardnera, T.N., Stoll, T., Marks, L., Mishra, S., & Tate, M.K. (2000). The influence of mechanical stimulus on the pattern of tissue differentiation in a long bone fracture − an FEM study. Journal of Biomechanics, 33(4), 415−425. doi: 10.1016/S0021-9290(99)00189-X
- [16] Izzawati, B., Daud, R., Rojan, A., Majid, M.A., Najwa, M.N., Zain, N.A., & Azizan, A.F. (2019). The effect of bone healing condition on the stress of screw fixation in orthotropic femur bone for fracture stabilization. Materials Today: Proceedings,16(4), 2160−2169. doi: 10.1016/j.matpr.2019.06.106
- [17] Samiezadeh, S., Schemitsch, E. H., Zdero, R., & Bougherara, H. (2020). Biomechanical response under stress-controlled tensiontension fatigue of a novel carbon fiber/epoxy intramedullary nail for femur fractures. Medical Engineering & Physics, 80, 26−32.doi: 10.1016/j.medengphy.2020.04.001
- [18] Amalraju, D., & Dawood, A.K. (2012). Mechanical strength evaluation analysis of stainless steel and titanium locking plate for femur bone fracture. Engineering Science and Technology: An International Journal, 2(3), 381−388.
- [19] Dhason, R., Roy, S., & Datta, S. (2020). A biomechanical study on the laminate stacking sequence in composite bone plates for vancouver femur B1 fracture fixation. Computer Methods and Programs in Biomedicine, 196, 105680. doi: 10.1016/j.cmpb.2020.105680
- [20] Kumar, K.N., Griya, N., Shaikh, A., Chaudhry, V., & Chavadaki, S. (2020). Structural analysis of femur bone to predict the suitable alternative material. Materials Today: Proceedings, 26, 364−368.doi: 10.1016/j.matpr.2019.12.031
- [21] Das, S., & Sarangi, S.K. (2014). Finite element analysis of femur fracture fixation plates. International Journal of Basic and Applied Biology, 1(1), 1−5.
- [22] Steiner, L., Synek, A., & Pahr, D.H. (2021). Femoral strength can be predicted from 2D projections using a 3D statistical deformation and texture model with finite element analysis. Medical Engineering & Physics, 93, 72−82. doi: 10.1016/j.medengphy.2021.05.012
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a855c463-ab7b-4b1a-b30a-65d0bf218e5b