PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel anisotropic mesh refinement with dynamic load balancing for transonic flow simulations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present paper discusses an effective adaptive methods suited for use in parallel environment. An in-house, parallel flow solver based on the residual distribution method is used for the solution of flow problems. Simulation is parallelized based on the domain decomposition approach. Adaptive changes to the mesh are achieved by two distinctive techniques. Mesh refinement is performed by dividing element edges and a subsequent application of pre defined splitting templates. Mesh regularization and derefinement is achieved through topology conserving node movement (r-adaptivity). Parallel implementations of an adaptive use the dynamic load balancing technique.
Rocznik
Strony
195--207
Opis fizyczny
Bibliogr. 66 poz., rys., wykr.
Twórcy
autor
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, 24 Nowowiejska St., 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, 24 Nowowiejska St., 00-665 Warsaw, Poland
autor
  • Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, 24 Nowowiejska St., 00-665 Warsaw, Poland
Bibliografia
  • [1] Y. Bourgault, M. Picasso, F. Alauzet, and A. Loseille, “On the use of anisotropic a posteriori error estimators for the adaptative solution of 3D inviscid compressible flows”, International Journal for Numerical Methods in Fluids 59 (1), 47-74 (2009).
  • [2] F. Alauzet, “Size gradation control of anisotropic meshes”, Finite Elem. Anal. Des. 46, 181-202 (2010).
  • [3] M.J. Castro-Diaz, F. Hecht, and B. Mohammadi, “New progress in anisotropic grid adaptation for inviscid and viscous flows simulations”, Tech. Rep. RR-2671, INRIA, 1995.
  • [4] J. Majewski, “An anisotropic adaptation for simulation of compressible flows”, Mathematical Modelling and Analysis 7, 127-134 (2002).
  • [5] G. Karypis and V. Kumar, MeTis: Unstructured Graph Partitioning and Sparse Matrix Ordering System, Version 2.0, 1995.
  • [6] S. Patkar and H. Narayanan, “An efficient practical heuristic for good ratio-cut partitioning”, Proceedings of 16th International Conference on VLSI Design, 2003, 64-69 (2003).
  • [7] B. Hendrickson and T.G. Kolda, “Graph partitioning models for parallel computing”, Parallel Computing 26 (12), 1519-1534 (2000).
  • [8] A.E. Feldmann, “Fast balanced partitioning is hard even on grids and trees”, Theoretical Computer Science 485, 61-68 (2013).
  • [9] C. Troyer, D. Baraldi, D. Kranzlmuller, H. Wilkening, and J. Volkert, “Parallel grid adaptation and dynamic load balancing for a CFD solver”, Lecture Notes in Computer Science 3666, 493-501 (2005).
  • [10] L. Oliker, R. Biswas, and H.N. Gabow, “Parallel tetrahedral mesh adaptation with dynamic load balancing”, Parallel Comput. 26 (12), 1583-1608 (2000).
  • [11] B. Hendrickson and K. Devine, “Dynamic load balancing in computational mechanics”, Computer Methods in Applied Mechanics and Engineering 184 (2‒4), 485-500 (2000).
  • [12] S. Gepner and J. Rokicki, “Dynamic load balancing for parallelization of adaptive algorithms”, in ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, vol. CXII, pp. 327-338, eds. N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sorensen, Springer-Verlag, Berlin, 2010.
  • [13] S. Gepner, J. Majewski, and J. Rokicki, “Dynamic load balancing for adaptive parallel flow problems”, in Parallel Processing and Applied Mathematics. PPAM 2009, eds. R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Springer, Berlin, 2010.
  • [14] K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D. Teresco, J. Faik, J.E. Flaherty, and L.G. Gervasio, “New challenges in dynamic load balancing”, Applied Numerical Mathematics 52 (2‒3), 133-152 (2005).
  • [15] J.M.S. Gepner and J. Rokicki, “Parallel performance of adaptive algorithms with dynamic load balancing”, 5th European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010, (2010).
  • [16] S. Gepner, J. Majewski, and J. Rokicki, “Parallel efficiency of an adaptive, dynamically balanced flow solver”, in Parallel Processing and Applied Mathematics, pp. 541-550, eds. R. Wyrzykowski, J. Dongarra, K. Karczewski, and J. Waśniewski, Springer, Berlin, 2014.
  • [17] P.J. Frey and F. Alauzet, “Anisotropic mesh adaptation for CFD computations”, Comput. Methods Appl. Mech. Engrg 194 (48‒49), 5068-5082 (2005).
  • [18] O.C. Zienkiewicz and J.Z. Zhu, “A simple error estimator and adaptive procedure for practical engineering analysis”, International Journal for Numerical Methods in Engineering 24 (2), 337-357 (1987).
  • [19] O.C. Zienkiewicz and J.Z. Zhu, “The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique”, International Journal for Numerical Methods in Engineering 33 (7), 1331-1364 (1992).
  • [20] O.C. Zienkiewicz and J.Z. Zhu, “The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity”, International Journal for Numerical Methods in Engineering 33 (7), 1365-1382 (1992).
  • [21] P.E. Farrell, S. Micheletti, and S. Perotto, “An anisotropic Zienkiewicz- Zhu-type error estimator for 3d applications”, International Journal for Numerical Methods in Engineering 85 (6), 671-692 (2011).
  • [22] S. Micheletti and S. Perotto, “Reliability and efficiency of an anisotropic Zienkiewicz-Zhu error estimator”, Computer Methods in Applied Mechanics and Engineering 195 (9-12), 799 - 835 (2006).
  • [23] F. Chalot, “Goal-oriented mesh adaptation in an industrial stabilized finite element Navier-Stokes code”, in ADIGMA - A European Initiative on the Development of Adaptive Higher- Order Variational Methods for Aerospace Applications, pp. 369-385, eds. N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sørensen, Springer, Berlin, 2010.
  • [24] A. Loseille, A. Dervieux, and F. Alauzet, “Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations”, J. Comput. Physics 229 (8), 2866-2897 (2010).
  • [25] R. Hartmann, “Adjoint consistency analysis of discontinuous Galerkin discretizations”, SIAM J. Numer. Anal. 45 (6), 2671-2696 (2007).
  • [26] L. Tourrette, M. Meaux, and A. Barthet, “Adjoint-based correction of aerodynamic coefficients on structured multiblock grids”, in ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, pp. 355-368, eds. N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sørensen, Springer, Berlin, 2010.
  • [27] D.A. Venditti and D.L. Darmofal, “Anisotropic grid adaptation for functional outputs: application to two-dimensional viscous flows”, J. Comput. Phys 187, 22-46 (2003).
  • [28] D.J. Mavriplis, “Adaptive mesh generation for viscous flows using Delaunay triangulation”, J. Comput. Phys. 90, 271-291 (1990).
  • [29] J. Peraire, J. Peiró, and K. Morgan, “Adaptive remeshing for three-dimensional compressible flow computations”, Journal of Computational Physics 103 (2), 269-285 (1992).
  • [30] P.J. Frey and F. Alauzet, “Anisotropic mesh adaptation for transient flows simulations”, Proc. of 12th Int. Meshing Roundtable, 335-348 (2003).
  • [31] M.J. Castro-Diaz, F. Hecht, B. Mohammadi, and O. Pironneau, “Anisotropic unstructured mesh adaptation for flow simulation”, International Journal for Numerical Methods in Fluids 25, 475-491 (1997).
  • [32] F. Alauzet, P.L. George, B. Mohammadi, P.J. Frey, and H. Borouchaki, “Transient fixed point-based unstructured mesh adaptation”, International Journal for Numerical Methods in Fluids 43, 729-745 (2003).
  • [33] J. Majewski and J. Rokicki, “Anisotropic mesh adaptation in the presence of complex boundaries”, in ADIGMA - A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications, pp. 441-453, eds. N. Kroll, H. Bieler, H. Deconinck, V. Couaillier, H. van der Ven, and K. Sørensen, Springer, Berlin, 2010.
  • [34] J. Majewski and P. Szałtys, “High-order 3D anisotropic mesh adaptation for high-Reynolds number flows”, in IDIHOM FP7 - Transport, AAT.2010.1.1‒1., AAT.2010.4.1‒1., 2010.
  • [35] J. Majewski and A. Athanasiadis, “Anisotropic solution adaptive technique applied to simulations of steady and unsteady compressible flows”, in Computational Fluid Dynamics 2006, eds. H. Deconinck and E. Dick, 2009.
  • [36] J. Majewski, “Anisotropic adaptation for flow simulations in complex geometries”, in 36th Lecture Series on Computational Fluid Dynamics / ADIGMA course on HP-adaptive and HP-multigrid methods, ed. H. Deconinck, von Karman Institute for Fluid Dynamics, 2009.
  • [37] M.A. Park and D.L. Darmofal, “Parallel anisotropic tetrahedral adaptation”, in 46th AIAA Aerospace Sciences Meeting and Exhibit, vol. 917, 2008.
  • [38] F. Alauzet, X. Li, E.S. Seol, and M.S. Shephard, “Parallel anisotropic 3D mesh adaptation by mesh modification”, Engineering with Computers 21 (3), 247-258 (2006).
  • [39] A. Loseille and R. Löhner, “On 3D anisotropic local remeshing for surface, volume and boundary layers”, in Proceedings of the 18th International Meshing Roundtable, pp. 611-630, ed. B.W. Clark, Springer, Berlin, 2009.
  • [40] G. Compère, J.-F. Remacle, J. Jansson, and J. Hoffman, “A mesh adaptation framework for dealing with large deforming meshes”, International Journal for Numerical Methods in Engineering 82 (7), 843-867 (2010).
  • [41] Y.M. Park and O.J. Kwon, “A parallel unstructured dynamic mesh adaptation algorithm for 3D unsteady flows”, International Journal for Numerical Methods in Fluids 48, 671-690 (2005).
  • [42] X. Li, M.S. Shephard, and M.W. Beall, “3D anisotropic mesh adaptation by mesh modification”, Computer Methods in Applied Mechanics and Engineering 194 (48-49), 4915-4950 (2005).
  • [43] Z. Zhu, P. Wang, and S. Tuo, “An adaptive solution of the 3D Euler equations on an unstructured grid”, Acta Mechanica 155, 215-231 (2002).
  • [44] J. Waltz, “Parallel adaptive refinement for unsteady flow calculations on 3D unstructured grids”, International Journal for Numerical Methods in Fluids 46, 37-57 (2004).
  • [45] M.-C. Rivara, “New longest-edge algorithms for the refinement and/or improvement of unstructured triangulations”, International Journal for Numerical Methods in Engineering 40 (18), 3313-3324 (1997).
  • [46] E. Bänsch, “Local mesh refinement in 2 and 3 dimensions”, IMPACT of Computing in Science and Engineering 3 (3), 181-191 (1991).
  • [47] D. Arnold, A. Mukherjee, and L. Pouly, “Locally adapted tetrahedral meshes using bisection”, SIAM Journal on Scientific Computing 22 (2), 431-448 (2000).
  • [48] A. Rajagopal and S. Sivakumar, “A combined r-h adaptive strategy based on material forces and error assessment for plane problems and bimaterial interfaces”, Computational Mechanics 41 (1), 49-72 (2007).
  • [49] B. Ong, R. Russell, and S. Ruuth, “An h-r moving mesh method for one-dimensional time-dependent PDEs”, in Proceedings of the 21st International Meshing Roundtable, pp. 39-54, eds. X. Jiao and J.-C. Weill, Springer, Berlin, 2013.
  • [50] M. Scherer, R. Denzer, and P. Steinmann, “Energy-based r-adaptivity: A solution strategy and applications to fracture mechanics”, in Defect and Material Mechanics, pp. 117-132, eds. C. Dascalu, G. Maugin, and C. Stolz, Springer, Dordrecht, 2008.
  • [51] W. Bauer, M. Baumann, L. Scheck, A. Gassmann, V. Heuveline, and S.C. Jones, “Simulation of tropical-cyclone-like vortices in shallow-water icon-hex using goal-oriented r-adaptivity”, Theoretical and Computational Fluid Dynamics 28 (1), 107-128 (2014).
  • [52] C.J. Budd, W. Huang, and R.D. Russell, “Adaptivity with moving grids”, Acta Numerica 18, 111-241 (2009).
  • [53] S. Gepner, Adaptacja Siatek i Przetwarzanie Równoległe w Symulacji Przepływów Transonicznych, PhD thesis, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 2014.
  • [54] H. Deconinck, K. Sermeus, and R. Abgrall, “Status of multidimensional upwind residual distribution schemes and applications in aeronautics”, AIAA Conference Proceedings, 2000-2328 (2000).
  • [55] M. Ricchiuto, Construction and Analysis of Compact Residual Discretizations for Conservation Laws on Unstructured Meshes, von Karman Institute for Fluid Dynamics, 2005.
  • [56] M. Ricchiuto, Construction and Analysis of Compact Residual Discretizations for Conservation Laws on Unstructured Meshes, PhD thesis, Faculty of Applied Science, Université Libre de Bruxelles, 2005.
  • [57] K. Sermeus and H. Deconinck, “Solution of steady Euler and Navier- Stokes equations using residual distribution schemes”, in 33rd Lecture Series on Computational Fluid Dynamics - Novel Methods for Solving Convection Dominated Systems (LS2003- 05), von Karman Institute for Fluid Dynamics, Rhode Saint Genèse, Belgium, 2003.
  • [58] L.M. Mesaros and J. Matthew, Multi-Dimensional Fluctuation Splitting Schemes For The Euler Equations On Unstructured Grids, PhD thesis, University of Michigan, 1995.
  • [59] P.L. George and H. Borouchaki, Delaunay Triangulation and Meshing - Application to Finite Elements, Hermes, 1998.
  • [60] L. Formaggia and S. Perotto, “Anisotropic error estimation for finite element methods”, in 31st Computational Fluid Dynamics, eds. N.P. Weatherill and H. Deconinck, von Karman Institute for Fluid Dynamics, 2000.
  • [61] J. Ruppert and R. Seidel, “On the difficulty of triangulating three-dimensional nonconvex polyhedra”, Discrete & Computational Geometry 7 (1), 227-253 (1992).
  • [62] E. Schönhardt, “Über die zerlegung von dreieckspolyedern in tetraeder”, Mathematische Annalen 98 (1), 309-312 (1928), [in German].
  • [63] O.C. Zienkiewicz and R.L. Taylor, Finite Element Method: Volume 1 - The Basis, 5th ed., Butterworth-Heinemann, Oxford, 2000.
  • [64] J. Rokicki, J. Żółtak, D. Drikakis, and J. Majewski, “Parallel performance of overlapping mesh technique for compressible flows”, Future Generation Computer Systems 18 (1), 3-15 (2001).
  • [65] G. Karypis, “ParMETIS - parallel graph partitioning and fill-reducing matrix ordering”, http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview.
  • [66] “Onera M6 Wing”, in NPARC Alliance Verification and Validation Archive, http://www.grc.nasa.gov/WWW/wind/valid/m6wing/m6wing.html.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a852d803-3eb0-4d4a-b209-5c18fd33fb9e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.