PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of environmental and operating conditions on the verification interval for smart electronic electricity meters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to metrological guidelines and specific legal requirements, every smart electronic electricity meter has to be constantly verified after pre-defined regular time intervals. The problem is that in most cases these pre-defined time intervals are based on some previous experience or empirical knowledge and rarely on scientifically sound data. Since the verification itself is a costly procedure it would be advantageous to put more effort into defining the required verification periods. Therefore, a fixed verification interval, recommended by various internal documents, standardised evaluation procedures and national legislation, could be technically and scientifically more justified and consequently more appropriate and trustworthy for the end user. This paper describes an experiment to determine the effect of alternating temperature and humidity and constant high current on a smart electronic electricity meter’s measurement accuracy. Based on an analysis of these effects it is proposed that the current fixed verification interval could be revised, taking into account also different climatic influence. The findings of this work could influence a new standardized procedure in respect of a meter’s verification interval.
Rocznik
Strony
171--184
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
autor
  • University of Ljubljana, Faculty of Electrical Engineering, Tržaška 25, 1000 Ljubljana, Slovenia
Bibliografia
  • [1] Pou, J. (2017). A smart approach to calibration - why we should forget calendar-based calibrations. IEEE Instrumentation & Measurement Magazine, 20(2), 11-12.
  • [2] Carbone, P. (2004). Performance of simple response method for the establishment and adjustment of calibration intervals. IEEE Transactions on instrumentation and measurement, 53(3), 730-734.
  • [3] Wang, J., Zhang, Q., Jiang, W. (2017). Optimization of calibration intervals for automatic test equipment. Measurement, 103, 87.
  • [4] Nunzi, E., Panfilo, G., Tavella, P., Carbone P., Petri, D. (2005). Stochastic and reactive methods for the determination of optimal calibration intervals. IEEE Transactions on instrumentation and measurement, 54(4), 1565.
  • [5] ISO 10012. Measurement Management Systems - Requirements for Measurement Processes and Measuring Equipment, 2003.
  • [6] Panfilo, G., Tavella, P., Nunzi, E., Carbone P., Petri, D. (2006). Optimal calibration interval determination techniques: the example of a rubidium frequency standard. IEEE Transactions on instrumentation and measurement technology conference proceedings, 55(5), 1713.
  • [7] Braudaway, D.W. (2003). The cost of calibration. IEEE Transactions on instrumentation and measurement, 52(3), 741.
  • [8] Ooi, M.P., Kassim, Z.A., Demidenko, S.N. (2007). Shortening burn-in test: application of HVST and Weibull statistical analysis. IEEE Transactions on instrumentation and measurement, 56(3), 990.
  • [9] Ciofi, C., Giannetti, R., Neri, B. (1998). True constant temperature measurement system for lifetime test of metallic interconnections of IC’s. IEEE Transactions on instrumentation and measurement, 47(5), 1187.
  • [10] Lee, H., Kim, D. B., Kim, W. (2016). Effect of humidity on the calibration of the four-terminal-pair air-dielectric capacity standards. Measurement, 86, 196.
  • [11] Sedlakova, V., Sikula, J., Majzner, J., Sedlak, P., Kuparowitz, T., Buergler, B., Vasina, P. (2016). Supercapacitor degradation assessment by power cycling and calendar life test. Metrol. Meas. Syst., 23(3), 355.
  • [12] ISO 62059-31-1. Electricity metering equipment - Dependability - Part 31-1: Accelerated reliability testing - Elevated temperature and humidity, 2008.
  • [13] IEC 60721-3-3. Classification of environmental conditions - Part 3: Classification of groups of environmental parameters and their severities, 1994.
  • [14] EN 62052-21. Electricity metering equipment (AC) - General requirements, tests and test conditions - Part 21: Tariff and load control equipment, 2017.
  • [15] Olencki, A., Mroz, P. (2014). Testing of energy meters under three-phase determined and random non sinusoidal conditions. Metrology Meas. Syst., 21(2), 229.
  • [16] EN 62053-21. Electricity metering equipment (a.c.) - Particular requirements - Part 21: Static meters for active energy (classes 1 and 2), 2017.
  • [17] EURAMET cg-20. (2015). Calibration of temperature and/or humidity enclosures. Version 4.0.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a84f280a-2c73-4a7d-be18-85e642222d83
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.