Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Toxic pollutants of industrial origin can be dangerous for professionals who come into contact with them at work, and also for the people who live near the sources of environmental hazards. There is a known relationship between the soil pollution with heavy metals and the morbidity of the population. This paper reports a study of the soil pollution with ions of heavy metals in the Turkestan region, Kazakhstan. The study found technogenic geochemical anomalies of various size, intensity and origin in the soils of the Turkestan region. The distribution of lead, copper, barium, zinc, molybdenum, phosphorus and arsenic was mapped based on the ecological and geochemical survey of the upper soil layer. The most polluted city is Kentau, where concentrations of Pb, Mo, Cu, Zn, As, Cd, Mn, Cr, Ni in the soil exceed the allowable level. The cause of pollution is erosion that occurs in the areas of technogenic waste storage. In some communities, the concentration of only one metal exceeded its MAC or the Clarke number, for example, only scandium exceeded its Clarke number by 1.1 in Lenger and only exceeded its Clarke number by 2.75 in Sholakkorgan.
Czasopismo
Rocznik
Tom
Strony
31--38
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
- South Kazakhstan Medical Academy, Al-Farabi Square 1, Shymkent, 160000, Kazakhstan
autor
- Auezov South Kazakhstan University, Tauke Khan Avenue 5, Shymkent, 160000, Kazakhstan
autor
- South Kazakhstan Pedagogical University, Baitursynov St. 13, Shymkent, 160000, Kazakhstan
autor
- South Kazakhstan Pedagogical University, Baitursynov St. 13, Shymkent, 160000, Kazakhstan
autor
- Auezov South Kazakhstan University, Tauke Khan Avenue 5, Shymkent, 160000, Kazakhstan
autor
- Shymkent University, Karatau District, 225, Shymkent, 160000, Kazakhstan
autor
- Shymkent University, Karatau District, 225, Shymkent, 160000, Kazakhstan
autor
- Auezov South Kazakhstan University, Tauke Khan Avenue 5, Shymkent, 160000, Kazakhstan
Bibliografia
- 1. Administration of Turkestan Region.2020.Official Website. Turkestan: Administration of Turkestan Region. http://ontustik.gov.kz
- 2. Agrelli, D., Caporale, A.G., Adamo, P. 2020. Assessment of the Bioavailability and Speciation of Heavy Metal(loid)s and Hydrocarbons for Risk-Based Soil Remediation. Agronomy, 10(9), 1440.
- 3. Azab, E., Hegazy, A.K. 2020. Monitoring the Efficiency of Rhazyastricta L. Plants in Phytoremediation of Heavy Metal-Contaminated Soil. Plants, 9(9), 1057.
- 4. Barbierу, M. 2016. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination J Geol. Geophys., 5, 237
- 5. Benidire, L., Madline, A., Pereira, S.I.A., Castro, P.M.L., Boularbah, A. 2021 Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings. Chemosphere, 262, 127803.
- 6. BNSASPRK (Bureau of National Statistics of Agency for Strategic Planning and Reforms of Kazakhstan.) 2020. Official Website.Nur-Sultan: BN-SASPRK. http://stat.gov.kz
- 7. Bureau of National Statistics of Agency for Strategic Planning and Reforms of Kazakhstan. 2017.Population of the Republic of Kazakhstan by regions, cities and districts as of 1 July 2017.Demographic statistics. Series 21
- 8. Dinu, M. 2015. Interaction between metal ions in waters with humic acids in gley-podzolic soils.Geochem. Int., 53(3), 265–276.
- 9. Dinu, M. 2017. Formation of organic substances of humus nature and their biospheric properties.Geochem. Int., 55(10), 911–926.
- 10. Dolev, N., Katz, Z., Ludmer, Z., Ullmann, A., Brauner, N., Goikhman, R. 2020. Natural amino acids as potential chelators for soil remediation. Environmental Research, 183, 109140.
- 11. Ecology Department of the South Kazakhstan Region. 2017. Information and analytical report on the control and law enforcement activities of the Ecology Department of the South Kazakhstan region in 2017.Shymkent: Ecology Department.
- 12. Ediagbonya, T.F., Nmema, E.E., Nwachukwu, P.C., Teniola, O.D. 2015. Identification and quantification of heavy metals, anions and coliforms in water bodies using enrichment factors. Environ. Anal. Chem, 2, 146. DOI: 10.4172/2380-2391.1000146
- 13. Environmental protection. 2018..Environmental protection in the South Kazakhstan region in 2012–2017: Statistics Digest.Shymkent: Environmental protection.
- 14. Ghazaryan, K.A., Movsesyan, H.S., Ghazaryan, N.P. 2017. Heavy metals in the soils of the mining regions of Кajaran, Аrmenia: a preliminary definition of contaminated areas. Acad. J. Sci., 7, 421–430.
- 15. GOST 17.4.3.01-83. 1983. Nature protection, Soils, General requirements for sampling. Moscow: GOST Publ. https://docs.cntd.ru/document/1200012800
- 16. GOST 17.4.4.02-84. 1984. Nature protection, Soils, Methods for sampling and preparation of soil for chemical, bacteriological, helmintological analysis. Moscow: GOST Publ. https://docs.cntd.ru/document/1200005920
- 17. GOST 28168-89. 1989. Soils, Sampling. Moscow: GOST Publ. https://docs.cntd.ru/document/1200023554
- 18. Kasimov, N. S., Valsov, D. V. 2015. Clarkes Of Chemical Elements As Comparison Standards In Ecogeochemistry. Vestnik Moskovskogo universiteta Seriya 5, Geografiya, 2, 7–17.
- 19. Kurwadkar, S., Kanel, S.R., Nakarmi, A. 2020. Groundwater pollution: Occurrence, detection, and remediation of organic and inorganic pollutants. Water Environment Research, 92(10), 1659-1668. DOI: 10.1002/wer.1415
- 20. Liu, B., He, Z., Liu, R., Montenegro, A.C., Ellis, M., Li, Q., Baligar, V.C. 2021. Comparative effectiveness of activated dolomite phosphate rock and biochar for immobilizing cadmium and lead in soils. Chemosphere, 266, 129202.
- 21. Merrington, G., Peters, A., Schlekat, C.E. 2016. Accounting for metal bioavailability in assessing water quality: a step change? Environ. Toxicol. Chem., 35(2), 257–265.
- 22. Ministry of Energy of Kazakhstan, 2018. National report on the state of the environment and the use of natural resources in the Republic of Kazakhstan in 2017. Astana: Ministry of Energy of Kazakhstan. http://ecogosfond.kz
- 23. Moiseenko, T.I. 2017. Evolution of biogeochemical cycles under anthropogenic loads: limits impacts. Geochem.Int., 55, 841–60.
- 24. Moiseenko, T.I. 2019. Bioavailability and Ecotoxicity of Metals in Aquatic Systems: Critical Contamination Levels. Geochem. Int. 57, 737–750. https://doi.org/10.1134/S0016702919070085
- 25. Moiseenko, T.I., Dinu, M.I., Gashkina, N.A., Kremleva, T.A. 2019. Aquatic environment and anthropogenic factor effects on distribution of trace elements in surface waters of European Russia and Western Siberia.Environ. Res. Lett., 14, 065010. DOI: 10.1088/1748-9326/ab17ea
- 26. Moiseenko, T.I., Morgunov, B.A., Gashkina, N.A., Megorskiy, V.V., Pesiakova, A.A. 2018. Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: case study of the Murmansk region, northwest of the Kola Peninsula, Russia. Environ. Research Lett., 13, 065005
- 27. Nkwunonwo, U.C., Odika, P.O., Onyia, N.I. 2020. A Review of the Health Implications of Heavy Metals in Food Chain in Nigeria. The Scientific World Journal, 2020, 1-11. DOI: 10.1155/2020/6594109
- 28. Palm, E., Nissim, W.G., Mancuso, S., Azzarello, E. 2021. Split-root investigation of the physiological response to heterogeneous elevated Zn exposure in poplar and willow. Environmental and Experimental Botany, 183, 104347.
- 29. Perez, E., Hoang, T. 2017. Chronic toxicity of binary-metal mixtures of cadmium and zinc to Daphnia magna.Environ. Toxicol. Chem., 99, 1–11.
- 30. Pooladi, А., Bazargan-Lari, R. 2020. Simultaneous removal of copper and zinc ions by Chitosan/Hydroxyapatite/nano-Magnetite composite. Journal of Materials Research and Technology, 9(6), 14841-14852. DOI: 10.1016/j.jmrt.2020.10.057
- 31. Simiele, M., Sferra, G., Lebrun, M., Renzone, G., Bourgerie,S., Scippa, G.S., Morabito, D., Scaloni, A., Trupiano, D. 2021. In-depth study to decipher mechanisms underlying Arabidopsis thaliana tolerance to metal(loid) soil contamination in association with biochar and/or bacteria. Environmental and Experimental Botany, 182, 104335.
- 32. Smith, K.S., Balistrierib, L.S., Todd, A.S. 2015. Using biotic ligand models to predict metal toxicity in mineralized systems.Appl. Geochem., 57, 55–72.
- 33. Tekade, R.K., Maheshwari, R., Jain, N.K. 2018. Toxicity of nanostructured biomaterials.Nanostruct. Mater.Biomed. Appl., 231–256.
- 34. Tleukeyeva, A., Alibayev, N., Issayeva, A., Mambetova, L., Sattarova, A., Issayev, Y. 2022. The Use of Phosphorus-Containing Waste and Algae to Produce Biofertilizer for Tomatoes. Journal of ecological engineering, 23(2), 48-52. https://doi.org/10.12911/22998993/144635
- 35. Väänänena, K., Leppänen, M.T., Chen, X., Akkanenaa, J. 2018. Metal bioavailability in ecological risk assessment of freshwater ecosystems: from science to environmental management. Ecotox. Environ. Saf., 147, 430–46
- 36. Wang, Y.Q., Yang, L.Y., Kong, L.H., Liu, E.F., Wang, L.F., Zhu, J.R. 2015. Spatial distribution, ecological risk assessment and source identification for heavy metals in surface sediments from Dongping Lake, Shandong, Catena, 125, 200–5
- 37. Yue, C., Du, H., Li, Y., Yin, N., Peng, B., Cui, Y. 2021. Stabilization of Soil Arsenic with Iron and Nano-Iron Materials: A Review. Journal of Nanoscience and Nanotechnology, 21(1), 10-21. DOI: https://doi.org/10.1166/jnn.2021.18476
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a846dd20-3890-42cb-be1e-9620c875d042