PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Quality Improvement of Refuse-Derived Fuel from Landfill Mining

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Refuse-derived fuel (RDF) utilization as an alternative fuel has encountered obstacles in complying with industrial quality standards. This study aimed to improve landfill-mined RDF quality for acceptable calorific values (CV), moisture, volatile, ash, fixed carbon, chlorine, and sulfur contents by the cement industry and coal-fired steam power plant. For eight consecutive working days, a minimum of 100 kg of mined material was sampled randomly from transport trucks. Each sample was separated into three fractions: fine (< 10 mm), medium (10–30 mm), and rough (> 30 mm). RDF ratio of plastic : wood and garden waste, originating from a rough fraction, were set at 20:80 to 80:20 with a 10-point interval, including controls at 0:100 and 100:0. Moisture, CV, volatile solids, ash, and fixed carbon contents of RDF were determined by ASTM codes, while chlorine and sulfur used APHA/AWWA/WEF standard methods. The RDF optimum ratio was 40:60, which produced CV, air-dried moisture, volatile solids, ash, fixed carbon, chlorine, and sulfur contents were 25.23 ± 0.53 MJ kg-1, 26.11 ± 2.84%, 75.20 ±1.21%, 21.18 ± 0.76%, 3.62 ± 0.63%, 0.129 ± 0.009%, and 0.058 ± 0.004%, respectively. These results met industrial RDF quality standards except for moisture, ash, and fixed carbon contents, which needed process improvements at the RDF processing plant.
Rocznik
Strony
298--313
Opis fizyczny
Bibliogr. 84 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Research Centre for Environmental and Clean Technology, National Research and Innovation Agency, 720 Building KST B.J. Habibie Muncul, South Tangerang, 15314, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Directorate of Environment, Maritime, Natural Resources, and Nuclear Policy, National Research and Innovation Agency, B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta, 10340, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
  • Department of Environmental Engineering, Faculty of Civil, Planning, and Geo Engineering, Institut Teknologi Sepuluh Nopember, Kampus ITS Sukolilo, Surabaya, 60111, Indonesia
Bibliografia
  • 1. APHA/AWWA/WEF. 2018. APHA/AWWA/WEF Method 4500-CL: Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington.
  • 2. APHA/AWWA/WEF. 2017. APHA/AWWA/WEF Method 4500-S D: Methylene Blue Method, 23rd ed. American Public Health Association, Washington.
  • 3. Arifianti, Q.A.M.O., Abidin, M.R., Nugrahani, E.F., Ummatin, K.K. 2019. Experimental Investigation of a Solar Greenhouse Dryer Using Fiber Plastic Cover to Reduce the Moisture Content of Refuse Derived Fuel in an Indonesian Cement Industry. In: International Conference and Utility Exhibition on Green Energy for Sustainable Development (ICUE), Phuket, Thailand, 2018. https://doi.org/10.23919/ICUE-GESD.2018.8635723
  • 4. Arumdani, I.S., Puspita, A.S., Budihardjo, M.A. 2021. MSW handling of top 5 leading waste-producing countries in Southeast Asia. In: IOP Conference Series – Earth Environmental Science, 896, 012003. https://doi.org/10.1088/1755-1315/896/1/012003
  • 5. ASTM. 2019. D5865 Standard Test Method for Gross Calorific Value of Coal and Coke. American Society for Testing and Materials International, West Conshohocken.
  • 6. ASTM. 2016. D5231–92 Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste. American Society for Testing and Materials International, West Conshohocken.
  • 7. ASTM. 2007a. D3175–07 Standard Test Method for Volatile Matter in the Analysis Sample of Coal and Coke. American Society for Testing and Materials International, West Conshohocken.
  • 8. ASTM. 2007b. D3172–07a Standard Practice for Proximate Analysis of Coal and Coke. American Society for Testing and Materials International, West Conshohocken.
  • 9. ASTM. 2002. D3174–02 Standard Test Method for Ash in the Analysis Sample of Coal and Coke from Coal. American Society for Testing and Materials International, West Conshohocken.
  • 10. ASTM, 1998. D2216–98 Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American Society for Testing and Materials International, West Conshohocken.
  • 11. Cahyadi. 2006. Strategy to reduce SO2 emissions in coal-fired power plants that do not have desulfurization. Jurnal Ilmiah Teknologi Energi, 1, 41–53.
  • 12. Cheela, V.R.S., John, M., Dubey, B. 2021. Quantitative determination of energy potential of refuse derived fuel from the waste recovered from Indian landfill. Sustainable Environment Research, 31(24). https://doi.org/10.1186/s42834-021-00097-5
  • 13. Chiemchaisri, C., Charnnok, B., Visvanathan, C. 2010. Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system. Bioresource Technology, 101(5), 1522–1527. https://doi.org/10.1016/j.biortech.2009.08.061
  • 14. Dahliar, N., Widodo, S., Tonggiroh, A. 2014. The influence of coal ash composition on the quality of portland cement clinker at PT. Tonasa Cement unit III. Geosains, 10, 58–67.
  • 15. Demirbaş, A. 2003. Relationships between lignin contents and fixed carbon contents of biomass samples. Energy Convertion and Management, 44(9), 1481–1486. https://doi.org/10.1016/S0196-8904(02)00168-1
  • 16. Duruaku, J.I., Ajiwe, V.I.E., Okoye, N.H., Arinze, R.U. 2016. An Evaluation of the calorific values of the branches and stems of 11 tropical trees. Journal of Sustainable Bioenergy Systems, 6(2), 44–54. https://doi.org/10.4236/jsbs.2016.62005
  • 17. El-Salamony, A.R., Mahmoud, H.M., Shehata, N. 2020. Enhancing the efficiency of a cement plant kiln using modified alternative fuel. Environmental Nanotechnology, Monitoring and Management, 14, 100310. https://doi.org/10.1016/j.enmm.2020.100310
  • 18. Eriska, H., Dewi, K., Pasek, A.D., Damanhuri, E. 2017. Hydrothermal carbonization of biomass waste by using a stirred reactor: An initial experimental results. Reaktor, 16(4), 212–217. https://doi.org/10.14710/reaktor.16.4.212-217
  • 19. Esguerra, J.L., Laner, D., Svensson, N., Krook, J. 2021. Landfill mining in Europe: Assessing the economic potential of value creation from generated combustibles and fines residue. Waste Management, 126, 221–230. https://doi.org/10.1016/j.wasman.2021.03.013
  • 20. European Commission-Directorate General Environment. 2003. Refuse Derived Fuel, Current Practice, and Perspectives: Quality Standards for Solid Recovered Fuel. European Commission-Directorate General Environment, Brussels.
  • 21. Gebreslassie, M.G., Gebreyesus, H.B., Gebretsadik, M.T., Bahta, S.T., Birkie, S.E. 2020. Characterization of municipal solid waste’s potential for power generation at Mekelle City as a waste minimisation strategy. International Journal of Sustainable Engineering, 13(1), 68–75. https://doi.org/10.1080/19397038.2019.1645757
  • 22. Gerven, T.V., Geysen, D., Pontikes, Y., Cizer, Ö., Mertens, G., Elsen, J., Balen, K.V., Jones, P.T. 2010. An integrated materials valorisation scheme for enhanced landfill mining.
  • 23. Horkoss, S., 2008. Reducing the SO2 emission from a cement kiln. Internastional Journal of Natural and Social Science, 1, 7–15.
  • 24. Indonesia Ministry of Law and Human Rights. 2018. Presidential Regulation no. 35 of 2018 concerning the Acceleration of Construction of Solid Waste Processing Installations into Electrical Energy Based on Environmentally Sustainable Technology.
  • 25. Indonesia Ministry of Environmental and Forestry. 2020. National Solid Waste Management Information System. Available from: https://sipsn.menlhk.go.id/sipsn/
  • 26. Indonesia Ministry of Public Works. 2013. Ministerial Regulation of Public Works no. 03/PRT/M/2013 on Implementation of Infrastructure and Facilities for Handling of Household Solid Waste and House-hold Solid Waste Alike.
  • 27. Isaac, K., Bada, S.O. 2020. The co-combustion performance and reaction kinetics of refuse derived fuels with South African high ash coal. Heliyon, 6(1), e03309. https://doi.org/10.1016/j.heliyon.2020.e03309
  • 28. Ismawati, Y., Proboretno, N., Septiono, M.A., Zaki, K. 2022. Refuse-Derived Fuel in Indonesia. Nexus3 Foundation/IPEN.
  • 29. Ismail, T.M., Ramzy, K., Sherif, H. 2020. Drying of refuse-derived fuel (RDF) using solar tunnel dryer integrated with flat-plate solar collector: An experimental approach. Detritus, 13, 140–147. https://doi.org/10.31025/2611-4135/2020.14028
  • 30. Itsarathorn, T., Towprayoon, S., Chiemchaisri, C., Patumsawad, S., Wangyao, K., Phongphipat, A. 2022. The Situation of RDF Utilization in the Cement Industry in Thailand. ICUE 2022 on Energy, Environment, and Climate Change.
  • 31. Jagodzińska, K., Lopez, C.G., Yang, W., Jönsson, P.G., Pretz, T., Raulf, K. 2021. Characterisation of excavated landfill waste fractions to evaluate the energy recovery potential using Py-GC/MS and ICP techniques. Resources, Conservation and Recycling, 168, 105446. https://doi.org/10.1016/j.resconrec.2021.105446
  • 32. Jain, M., Kumar, A., Kumar, A. 2023. Landfill mining: A review on material recovery and its utilization challenges. Process Safety and Environmental Protection, 169, 948–958. https://doi.org/10.1016/j.psep.2022.11.049
  • 33. Jayawati, D., Taufik, A. 2021. Supply and demand analysis of refuse derived fuel (RDF) for the cement industry in Indonesia. In: 2nd National Seminar on Industrial and Supply Chain Management, 196–202.
  • 34. Jones, P.T., Geysen, D., Tielemans, Y., Passel, S.V., Pontikes, Y., Blanpain, B., Quaghebeur, M., Hoekstra, N. 2013. Enhanced Landfill Mining in view of multiple resource recovery: a critical review. Journal of Cleaner Production, 55, 45–55. https://doi.org/10.1016/j.jclepro.2012.05.021
  • 35. Kaniowski, W., Taler, J., Wang, X., Kalemba-Rec, I., Gajek, M., Mlonka-Mędrala, A., Nowak-Woźny, D., Magdziarz, A. 2022. Investigation of biomass, RDF and coal ash-related problems: Impact on metallic heat exchanger surfaces of boilers. Fuel, 326, 125122. https://doi.org/10.1016/j.fuel.2022.125122
  • 36. Kara, M., Günay, E., Tabak, Y., Durgut, U., Yıldız, Ş., Enç, V. 2010. Development of refuse derived fuel for cement factories in Turkey. Combustion Science and Technology, 183(3), 203–219. https://doi.org/10.1080/00102202.2010.512580
  • 37. Kara, M., Günay, E., Tabak, Y., Yıldız, Ş. 2009. Perspectives for pilot scale study of RDF in Istanbul, Turkey. Waste Management, 29(12), 2976–2982. https://doi.org/10.1016/j.wasman.2009.07.014
  • 38. Ko, J.H., Xu, Q., Jang, Y.C. 2015. Emissions and control of hydrogen sulfide at landfills: A Review. Critical Reviews in Environmental Science and Technology, 45(19), 2043–2083. https://doi.org/10.1080/10643389.2015.1010427
  • 39. Krook, J., Svensson, N., Eklund, M. 2012. Landfill mining: A critical review of two decades of research. Waste Management, 32(3), 513–520. https://doi.org/10.1016/j.wasman.2011.10.015
  • 40. Krook, J., Svensson, N., Passel, S.V., Acker, K.V. 2018. How to evaluate (enhanced) landfill mining: A critical review of recent environmental and economic assessments. In: Proceedings of the 4th International Symposium on Enhanced Landfill Mining, 317–332.
  • 41. Kurian, J., Esakku, S., Palanivelu, K., Selvam, A. 2003. Studies on landfill mining at solid waste dumpsites in India.
  • 42. Laner, D., Esguerra, J.L., Krook, J., Horttanainen, M., Kriipsalu, M., Rosendal, R.M., Stanisavljević, N. 2019. Systematic assessment of critical factors for the economic performance of landfill mining in Europe: What drives the economy of landfill mining? Waste Management, 95, 674–686. https://doi.org/10.1016/j.wasman.2019.07.007
  • 43. Larney, F.J., Ellert, B.H., Olson, A.F. 2005. Carbon, ash and organic matter relationships for feedlot manures and composts. Canadian Journal of Soil Science, 85(2), 261–264. https://doi.org/10.4141/S04-060
  • 44. Loganathan, B.G., Masunaga, S. 2009. PCBs, dioxins, and furans: Human exposure and health effects, in: Handbook of Toxicology of Chemical Warfare Agents. Academic Press, pp. 245–253.
  • 45. López, C.G., Küppers, B., Clausen, A., Pretz, T. 2018. Landfill mining: A case study regarding sampling, processing and characterization of excavated waste from an Austrian landfill. Detritus, 2, 29–45. https://doi.org/10.31025/2611-4135/2018.13664
  • 46. Ma, W., Terrence, W., Flemming, J.F., Beibei, Y., Guanyi, C. 2020. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Progress in Energy and Combustion Science, 76, 100789. https://doi.org/10.1016/j.pecs.2019.100789
  • 47. Mboowa, D., Quereshi, S., Bhattacharjee, C., Tonny, K., Dutta, S. 2017. Qualitative determination of energy potential and methane generation from municipal solid waste (MSW) in Dhanbad (India). Energy, 123, 386–391. https://doi.org/10.1016/j.energy.2017.02.009
  • 48. Nafi’ah, C.F., Fadilah, K. 2023. Planning for the development of an integrated waste processing site at the Banjarbakula regional final disposal site, South Kalimantan. Jurnal Teknik Sipil dan Lingkungan, 8, 37–46. https://doi.org/10.29244/jsil.8.1.37-46
  • 49. Widyarsana, I.M.W., Tambunan, S.A. 2022. Analysis of potential utilization of landfill materials (case study: Sumur Batu landfill, Bekasi). In: IOP Conference Series – Earth Environmental Science, 999, 012021. https://doi.org/10.1088/1755-1315/999/1/012021
  • 50. Márquez, A.J.C., Filho, P.C.C, Rutkowski, E.W., Isaac, R.D. 2019. Landfill mining as a strategic tool towards global sustainable development. Journal of Cleaner Production, 226, 1102–1115. https://doi.org/10.1016/j.jclepro.2019.04.057
  • 51. Nasiri, S., Hajinezhad, A., Kianmehr, M.H., Tajik, S. 2023. Enhancing municipal solid waste efficiency through Refuse Derived Fuel pellets: Additive analysis, die retention time, and temperature impact. Energy Reports, 10, 941–957. https://doi.org/10.1016/j.egyr.2023.07.039
  • 52. Neina, D., Faust, S., Joergensen, R.G. 2020. Characterization of charcoal and firewood ash for use in African peri-urban agriculture. Chemical and Biological Technologies in Agriculture, 7, 2–10. https://doi.org/10.1186/s40538-019-0171-2
  • 53. Novita, D.M., Damanhuri, E. 2010. Heating value based on composition and characteristics of municipal solid waste in indonesia in waste to energy concept. Jurnal Teknik Lingkungan, 16, 103–114.
  • 54. Paramita, W., Hartono, D.M., Soesilo, T.E.B. 2018. Sustainability of refuse derived fuel potential from municipal solid waste for cement’s alternative fuel in Indonesia (a case at Jeruklegi landfill, in Cilacap). In: IOP Conference Series – Earth Environmental Science, 159, 012027. https://doi.org/10.1088/1755-1315/159/1/012027
  • 55. Pettersson, J., Folkeson, N., Johansson, L.G., Svensson, J.E. 2011. The effects of KCl, K2SO4 and K2CO3 on the high temperature corrosion of a 304-type austenitic stainless steel. Oxidation of Metals, 76, 93–109. https://doi.org/10.1007/s11085-011-9240-z
  • 56. Picone, M., Delaney, E., Tagliapietra, D., Guarneri, I., Ghirardini, A.V. 2020. Bioaccumulation of polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) in Hediste diversicolor (Polychaeta: Nereididae). Frontiers in Ecology and Evolution, 8, 235. https://doi.org/10.3389/fevo.2020.00235
  • 57. Prechthai, T., Padmasri, M., Visvanathan, C. 2008. Quality assessment of mined MSW from an open dumpsite for recycling potential. Resources, Conservation and Recycling, 53, 70–78. https://doi.org/10.1016/j.resconrec.2008.09.002
  • 58. Prihartanto, P., Trihadiningrum, Y., Kholiq, M.A., Bagastyo, A.Y., Warmadewanthi, I.D.A.A. 2023a. Characterization of landfill-mined materials as a waste-to-energy source at integrated solid waste treatment facilities of Jakarta Province, Indonesia. Journal of Material Cycles Waste Management, 25, 3872–3884. https://doi.org/10.1007/s10163-023-01810-9
  • 59. Prihartanto, Putri, V.M., Trihadiningrum, Y., Kholiq, M.A., Bagastyo, A.Y., Warmadewanthi, I.D.A.A. 2023b. Characteristics of humate soil from landfill mining in Bantargebang integrated solid waste treatment facility, Indonesia. In: IOP Conference Series – Earth Environmental Science, 1201, 012002. https://doi.org/10.1088/1755-1315/1201/1/012002
  • 60. Quaghebeur, M., Laenen, B., Nielsen, P., Geysen, D. 2018. Valorisation of materials within enhanced landfill mining: What is feasible?
  • 61. Quaghebeur, M., Laenen, L., Geysen, D., Nielsen, P., Pontikes, Y., Gerven, T.V., Spooren, J. 2013. Characterization of landfilled materials: Screening of the enhanced landfill mining potential. Journal of Cleaner Production, 55, 72–83. https://doi.org/10.1016/j.jclepro.2012.06.012
  • 62. Rattanaoudom, R., Juanga, J.P., Visvanathan, C. 2008. Dumpsite toxicty assessment and potential for rehabilitation: A case study at Maung Pathum dumpsite, Thailand.
  • 63. Rotheut, M., Quicker, P. 2017. Energetic utilisation of refuse derived fuels from landfill mining. Waste Management, 62, 101–117. https://doi.org/10.1016/j.wasman.2017.02.002
  • 64. Safavi, S.M., Richter, C., Unnthorsson, R. 2021. Dioxin and Furan Emissions from Gasification. In: V. Silva, C.E. Tuna (Eds.), Gasification. IntechOpen. https://doi.org/10.5772/intechopen.95475
  • 65. Sarc, R., Lorber, K.E. 2013. Production, quality and quality assurance of refuse derived fuels (RDFs). Waste Management, 33(9), 1825–1834. https://doi.org/10.1016/j.wasman.2013.05.004
  • 66. Sathyanarayanan, S.S., Karthikeyan, O.P., Joseph, K. 2010. Biological stability of municipal solid waste from simulated landfills under tropical environment. Bioresource Technology, 101, 845–852. https://doi.org/10.1016/j.biortech.2009.08.104
  • 67. Sepehri, A., Sarrafzadeh, M.H. 2019. Activity enhancement of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria in activated sludge process: metabolite reduction and CO2 mitigation intensification process. Applied Water Science, 9(131). https://doi.org/10.1007/s13201-019-1017-6
  • 68. Sepehri, A., Sarrafzadeh, M.H. 2018. Effect of nitrifiers community on fouling mitigation and nitrification efficiency in a membrane bioreactor. Chemical Engineering and Processing - Process Intensification, 128, 10–18. https://doi.org/10.1016/j.cep.2018.04.006
  • 69. Sharma, P., Sheth, P.N., Mohapatra, B.N. 2022. Recent progress in refuse derived fuel (RDF) coprocessing in cement production: Direct firing in kiln/calciner vs process integration of RDF gasification. Waste Biomass Valorization, 13, 4347–4374. https://doi.org/10.1007/s12649-022-01840-8
  • 70. Shin, J.S., Shun, D., Cho, C.H., Bae, D.H. 2023. A study on the co-combustion characteristics of coal and bio-SRF in CFBC. Energies, 16, 1981. https://doi.org/10.3390/en16041981
  • 71. Smołka-Danielowska, D., Jabłońska, M. 2022. Chemical and mineral composition of ashes from wood biomass combustion in domestic wood-fired furnaces. International Journal of Environmental Science and Technology, 19, 5359–5372. https://doi.org/10.1007/s13762-021-03506-9
  • 72. Solusi Bangun Indonesia. 2019. Production of Refuse-Derived Fuel (RDF) as Alternative Fuel in Cement Kiln.
  • 73. Suknark, P., Buddhawong, S., Towprayoon, S., Vinitnantharat, S., Phongphiphat, A., Jirajariyavech, I., Wangyao, K. 2022. Assessment of refuse-derived fuel production from a thin-layer landfill.
  • 74. Sun, R., Ismail, T.M., Ren, X., El-Salam, M.A. 2016. Effect of ash content on the combustion process of simulated MSW in the fixed bed. Waste Management, 48, 236–249. https://doi.org/10.1016/j.wasman.2015.10.007
  • 75. Tchobanoglous, G., Theisen, H., Vigil, S. 2000. Integrated Solid Waste Management Engineering Principles and Management Issues, first. ed. Mc-Graw-Hill, New York.
  • 76. Tomsej, T., Horak, J., Tomsejova, S., Krpec, K., Klanova, J., Dej, M., Hopan, F. 2018. The impact of co-combustion of polyethylene plastics and wood in a small residential boiler on emissions of gaseous pollutants, particulate matter, PAHs and 1,3,5-triphenylbenzene. Chemosphere, 196, 18–24. https://doi.org/10.1016/j.chemosphere.2017.12.127
  • 77. Tun, M.M., Juchelková, D., 2018. Drying methods for municipal solid waste quality improvement in the developed and developing countries: A review. Environmental Engineering Research, 24(4), 529–542. https://doi.org/10.4491/eer.2018.327
  • 78. US EPA. 2023. Health and Environmental Effects of Particulate Matter (PM). United State Environmental Protection Agency. Available from: https://www.epa.gov/pm-pollution/health-and-environmental-effects-particulate-matter-pm#:~:text=Health%20Effects&text=Exposure%20to%20such%20particles%20can,nonfatal%20heart%20attacks
  • 79. Wang, Y., Lu, X., Fei, X. 2021. Property changes of conventional plastic waste mixed with municipal solid waste after 10-year degradation experiments simulating landfill conditions. Journal of Hazardous Materials Letters, 2, 1–7. https://doi.org/10.1016/j.hazl.2021.100047
  • 80. Wang, Y., Zhu, H., Jiang, X., Lv, G., Yan, J. 2019. Study on the evolution and transformation of Cl during co-incineration of a mixture of rectification residue and raw meal of a cement kiln. Waste Management, 84, 112–118. https://doi.org/10.1016/j.wasman.2018.11.036
  • 81. Zaenudin, A. 2023. Towards the Red and White RDF Plant.
  • 82. Zhang, M., Buekens, A., Jiang, X., Li, X. 2015. Dioxins and polyvinylchloride in combustion and fires. Waste Management Research., 33(7), 630–643. https://doi.org/10.1177/0734242X15590651
  • 83. Zhao, L., Giannis, A., Lam, W.Y., Lin, S.X., Yin, K. Yuan, G.A., Wang, J.Y. 2016. Characterization of Singapore RDF resources and analysis of their heating value. Sustainable Environment Research, 26(1), 51–54. https://doi.org/10.1016/j.serj.2015.09.003
  • 84. Zhou, C., Fang, W., Xu, W., Cao, A., Wang, R. 2014. Characteristics and the recovery potential of plastic wastes obtained from landfill mining. Journal of Cleaner Production, 80, 80–86. https://doi.org/10.1016/j.jclepro.2014.05.083
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a83c65ce-3e21-4aa7-8d10-6abfbbfcc68d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.