PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hankel and Toeplitz operators: continuous and discrete representations

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We find a relation guaranteeing that Hankel operators realized in the space of sequences [formula] and in the space of functions [formula] are unitarily equivalent. This allows us to obtain exhaustive spectral results for two classes of unbounded Hankel operators in the space [formula] generalizing in different directions the classical Hilbert matrix. We also discuss a link between representations of Toeplitz operators in the spaces [formula] and [formula].
Rocznik
Strony
189--218
Opis fizyczny
Bibliogr. 24 poz.
Twórcy
autor
  • Universite de Rennes I IRMAR Campus de Beaulieu, 35042 Rennes Cedex, France
Bibliografia
  • [1] A. Bottcher, B. Silbermann, Analysis of Toeplitz operators, Springer Verlag, 2006.
  • [2] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 1, 2, McGraw-Hill, New York, Toronto, London, 1953.
  • [3] J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
  • [4] I.M. Gel’fand, G.E. Shilov, Generalized Functions, vol. 1, Academic Press, New York, London, 1964.
  • [5] I. Gohberg, S. Goldberg, M. Kaashoek, Classes of Linear Operators, vol. 1, Birkhauser, 1990.
  • [6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New York, 1962.
  • [7] P. Koosis, Introduction to Hp Spaces, LMS, Lecture Note Series 40, Cambridge Univ. Press, 1980.
  • [8] W. Magnus, On the spectrum of Hilbert’s matrix, Amer. J. Math. 72 (1950), 405-412.
  • [9] A.V. Megretskii, V.V. Peller, S.R. Treil, The inverse spectra! problem for self-adjoint Hankel operators, Acta Math. 174 (1995), 241-309.
  • [10] Z. Nehari, On bounded bilinear forms, Ann. Math. 65 (1957), 153-162.
  • [11] N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. I: Hardy, Hankel, and Toeplitz, Math. Surveys and Monographs, vol. 92, Amer. Math. Soc., Providence, Rhode Island, 2002.
  • [12] V.V. Peller, Hankel Operators and Their Applications, Springer Verlag, 2003.
  • [13] M. Rosenblum, On the Hilbert matrix, I, II, Proc. Amer. Math. Soc. 9 (1958), 137-140, 581-585.
  • [14] M. Rosenblum, J. Rovnyak, Hardy Classes and Operator Theory, Oxford Univ. Press, 1985.
  • [15] H. Widom, Hankel matrices, Trans. Amer. Math. Soc. 121 (1966), 1-35.
  • [16] D.R. Yafaev, Quasi-diagonalization of Hankel operators, preprint, arXiv:1403.3941 (2014); to appear in J. d’Analyse Mathematique.
  • [17] D.R. Yafaev, Diagonalizations of two classes of unbounded Hankel operators, Bulletin Math. Sciences 4 (2014), 175-198.
  • [18] D.R. Yafaev, Criteria for Hankel operators to be sign-definite, Analysis & PDE 8 (2015), 183-221.
  • [19] D.R. Yafaev, Quasi-Carleman operators and their spectral properties, Integral Equations Operator Theory 81 (2015), 499-534.
  • [20] D.R. Yafaev, On finite rank Hankel operators, J. Funct. Anal. 268 (2015), 1808-1839.
  • [21] D.R. Yafaev, Spectral and scattering theory for differential and Hankel operator, arXiv: 1511.04683 (2015).
  • [22] D.R. Yafaev, Unbounded Hankel operator and moment problems, Integral Equations Operator Theory 85 (2016), 289-300.
  • [23] D.R. Yafaev, On semibounded Toeplitz operators, J. Oper. Theory 77 (2017), 101-112.
  • [24] D.R. Yafaev, On semibounded Wiener-Hopf operators, arXiv: 1606.01361 (2016).
Uwagi
EN
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a83c6497-9a1e-4386-8fd3-679bc47a6e1b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.