Tytuł artykułu
Identyfikatory
Warianty tytułu
Chapter 6. Selection of materials used for production tubing based on their degradation kinetics
Języki publikacji
Abstrakty
Chapter VI includes a wide range of microstructure description of steels (carbon steels: K55, N80-1, highly alloyed H13 and stainless steel 316) and composites (GRE — Glassfibre Reinforced Epoxy and HDPE — High-Density Polyethylene), and its influence on their corrosion resistance, leading to elaboration of the database of materials used in the shale gas production system due to their kinetics of degradation. In this Chapter, the modern methods within the study of electrochemical and mechanical properties of selected materials were used. The mechanism and kinetics of corrosion and erosion degradation were measured using electrochemical DC methods (LPR, LSV, potentiostatic and galvanostatic), AC methods — electrochemical impedance spectroscopy (EIS), gravimetric methods and morphological studies of material degradation with the use of image analysis. The composition and structure of corrosion products were investigated by XRD technique, FTIR spectroscopy, and SEM followed by EDS analysis. The Authors focused on four main tasks, the first one included the description of research on the corrosive-erosive wear resistance of steel and composite materials in the crevice fluid and the second comprised of the research on the corrosion resistance of steel and composite materials in the H2O-CO2-H2S atmosphere. The third part of the results presented in this chapter related to the microbiological corrosion resistance SRB (Sulfate Reducing Bacteria) of steel and composite materials in the H2O-CO2-H2S atmosphere. An important part of the investigations described in Chapter 6 was to make the comparison of the corrosive behaviour of steels, which are in frequent use in the shale-gas production system, and composites under the neutral salt spray conditions. Based on the above mentioned experiments, the authors compiled an extensive data- base, where a broad description of corrosion resistance of materials for shale-gas production systems is included. The matching of microstructural features with corrosion resistance and mechanical properties of various types of steel and new generation composite materials would have a strong influence on future experiments conducted in such a common aspect in the shale-gas production system, as materials degradation is.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
12--77
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr., zdj.
Twórcy
autor
autor
autor
autor
autor
autor
Bibliografia
- [1] Aminul Islam Md., Farhat Z.N., Ahmed E.M., Alfantazi A.M.: Erosion enhanced corrosion and corrosion enhanced erosion of API X-70 pipeline steel. Wear. 2013, vol. 302, no. 1-2, s. 1592-1601.
- [2] ANSI/NACE Standard TM0177-2005 Item No. 21212: Standard Test Method. Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments.
- [3] ANSI/NACE Standard TM-0284-2011 Item No. 21215: Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen-Induced Cracking.
- [4] Burk J.D.: Hydrogen-Induced Cracking in Surface Production Systems: Mechanism, Inspection, Repair and Prevention. SPE 1996, vol. 11, no. 1, s. 49-53.
- [5] Butnicki S.: Spawalność i kruchość stali. WNT, Warszawa 1979.
- [6] Cui Z.D., Wu S.L., Li C.E, Zhu S.L., Yang X.J.: Corrosion behavior of oil tube steels under conditions of multiphase flow saturated with super-critical carbon dioxide. Mat. Lett. 2004, vol. 58, no. 6, s. 1035-1040.
- [7] Enning D., Garrelfs J.: Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl. Environ. Microbiol. 2014, vol. 80, no. 4, s. 1226-1236.
- [8] Flis J.: Wodorowe i korozyjne niszczenie metali. PWN, Warszawa 1979.
- [9] Jiang X., Zheng Y.G., Qu D.R., Ke W.: Effect of calcium ions on pitting corrosion and inhibition performance in CO2 corrosion of N80 steel. Corros. Sci. 2006, vol. 48, no. 10, s. 3091-3108.
- [10] Li J.L., Ma H.X., Zhu S.D., Qu C.T., Yin Z.F.: Erosion resistance of CO2 corrosion scales formed on API PI10 carbon steel. Corros. Sci. 2014,vol. 86, s. 101-107.
- [11] Liu D., Zhao W., Liu S., Cen Q., Xue Q.: Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf. Coat. Technol. 2016, vol. 286, s. 354-364.
- [12] Liu H., Fu Ch., Gu T., Zhang G., Lv Y., Wang H.: Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corr. Sci. 2015, vol. 100, s. 484-495.
- [13] Liu Z., Gao X., Du L., Li J., Kuang Y., Wu B.: Corrosion behavior of low-alloy steel with martensite / ferrite microstructure at vapor-saturated CO2 and CO2 - saturated brine conditions. Appl. Surf. Sci. 2015, vol. 351, s. 610-623.
- [14] Lopez D., Perez T., Simison S.: The influence of microstructure and chemical composition of carbon and low alloy steels in CO2 corrosion. A state-of-the-art appraisal. Mater. Design. 2003, vol. 24, s. 561-575.
- [15] Olvera-Martinez M.E., Mendoza-Flores J., Genesca J.: CO2 corrosion control in steel pipelines. Influence of turbulent flow on the performance of corrosion inhibitors. J. Loss Prev. Process Ind. 2015, vol. 35, s. 19-28.
- [16] PN-EN 10229:2001: Ocena odporności wyrobów stalowych na pękanie wywołane wodorem (HIC).
- [17] PN-EN 10028-3:2010: Wyroby płaskie ze stali na urządzenia ciśnieniowe - Część 3: Stale spawalne drobnoziarniste normalizowane.
- [18] PN-EN ISO 11960: Przemysł naftowy i gazowniczy: Rury stalowe używane jako rury okładzinowe lub wydobywcze w otworach wiertniczych. 2014.
- [19] PN-EN ISO 15156-2:2010: Przemysł naftowy, petrochemiczny i gazowniczy. Materiały stosowane przy wydobyciu ropy i gazu w środowisku zawierającym H2S. Część 2: Stale niestopowe i niskostopowe odporne na pękanie oraz stosowanie żeliw.
- [20] PN-EN ISO 3183: Przemysł naftowy i gazowniczy: Rury stalowe do rurociągowych systemów transportowych. 2014.
- [21] Rao T.S., Kora A.J., Chandramohan P., Panigrahi B.S., Narasimhan S.V.: Biofouling and microbial corrosion problem in the thermo-fluid heat exchanger and cooling water system of a nuclear test reactor. Biofouling. 2009, vol. 25, no. 7, s. 581-591.
- [22] Shreir L.L.: Korozja metali i stopów. WNT, Warszawa 1966.
- [23] Starosvetsky J., Starosvetsky D., Armon R.: Identification of microbiologically influenced corrosion (MIC) in industrial equipment failures. Eng. Fail. Anal. 2007, vol. 14, no. 8, s. 1500-1511.
- [24] Videla H.A., Herrera L.K.: Microbiologically influenced corrosion: looking to the future. Int. Microbiol. 2005, vol. 8, no. 3, s. 169-180.
- [25] Xu C.M., Zhang Y.H., Cheng G.X., Zhu W.S.: Localized corrosion behavior of 316 L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Mater. Sci. Eng. A. 2007, vol. 443, s. 235-241.
- [26] Zhang G.A., Cheng Y.E: Electrochemical characterization and computational fluid dynamics simulation of flow-accelerated corrosion of X65 steel in a CO2-saturated oilfield formation water. Corros. Sci. 2010, vol. 52, no. 8, s. 2716-2724.
- [27] Zhang J., Lin Z., Ming Z., Han X.: Chemical analysis of the initial corrosion layer on pipeline steels in simulated CO2-enhanced oil recovery brines. Corros. Sci. 2012, vol. 65, s. 397-404.
- [28] Zheng Z.B., Zheng Y.G.: Erosion-enhanced corrosion of stainless steel and carbon steel measured electrochemically under liquid and slurry impingement. Eval. Program Plann. 2016, vol. 102, s. 259-268.
Uwagi
Opracowanie optymalnych koncepcji zagospodarowania złóż niekonwencjonalnych = Optimum concepts of unconventional reservoir development : praca zbiorowa pod red. Jana Lubasia. T. 2
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a83c1e3d-859f-4336-9032-a0c99ac6c2d3