PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chemical oxidation of polycyclic aromatic hydrocarbons in water by ferrates(VI)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Polycyclic aromatic hydrocarbons (PAHs) are a common part of the environment where they come from burning fossil fuels (through an incomplete combustion process). From a toxicological point of view, PAHs are considered to be carcinogens with a mutagenic and teratogenic effect. On the other hand, ferrates are generally believed to be the ideal chemical agent for water treatment due to their strong oxidation potential. Herein, the efficiency of degradation of PAHs (with the special emphasis on B[a]P) by ferrates under laboratory conditions was studied. The formation of degradation products was also considered. For this, two types of ferrates were used and both of them efficiently degraded B[a]P. When comparing ferrates that were bought from a Czech and USA company, no significant changes in terms of B[a]P degradability were observed. It was determined that the degradation efficiency of PAHs by ferrates was dependent on their molecular weight. Two and three cyclic PAHs have been completely degraded within 30 minutes, whereas five (and more) cyclic PAHs, only partially. The results obtained with ferrates were compared to the ones obtained with a classical oxidizing agent - KMnO4. In a qualitative test to detect degradation products of PAHs, two were identified, namely fluoren-9-one derived from fluorene and acentaphthylene, formed from acenaphthene.
Rocznik
Strony
529--542
Opis fizyczny
Bibliogr. 53 poz., rys., wykr., tab.
Twórcy
  • Laboratory of Instrumental Chemical Analysis, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1409/7, 461 17 Liberec 1, Czech Republic
  • Laboratory of Instrumental Chemical Analysis, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1409/7, 461 17 Liberec 1, Czech Republic
  • Laboratory of Instrumental Chemical Analysis, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1409/7, 461 17 Liberec 1, Czech Republic
  • Laboratory of Instrumental Chemical Analysis, Institute for Nanomaterials, Advanced Technologies and Innovations, Technical University of Liberec, Bendlova 1409/7, 461 17 Liberec 1, Czech Republic
Bibliografia
  • [1] Vo-Dinh T, Fetzer J, Campiglia AD. Monitoring and characterization of polyaromatic compounds in the environment. Talanta. 1998;47:943-69. DOI: 10.1016/S0039-9140(98)00162-3.
  • [2] US EPA O. Resources and Guidance Documents for Compliance Monitoring. US EPA. 2013. Available from: https://www.epa.gov/compliance/resources-and-guidance-documents-compliance-monitoring.
  • [3] Council Directive 75/440/EEC. European Environment Agency. Available from: https://www.eea.europa.eu/policy-documents/council-directive-75-440-eec.
  • [4] Council Directive 79/869/EEC. Available from: http://rod.eionet.europa.eu/instruments/213.
  • [5] Council Directive 80/778/EEC. Available from: https://rod.eionet.europa.eu/instruments/218.
  • [6] Official Journal of the European Union - L:1998:330:TOC. Available from: https://eur-lex.europa.eu/oj/direct-access.html.
  • [7] Korzeniowska J, Panek E. Trace metal concentrations in Pleurozium schreberi and Taraxacum officinale along the road No. 7. Ecol Chem Eng S. 2019;26:651-63. DOI: 10.1515/eces-2019-0047.
  • [8] Harvey RG. Bridged polycyclic aromatic hydrocarbons. A review. Org Prep Proced Int. 1997;29:243-83. DOI: 10.1080/00304949709355197.
  • [9] Council Directive 79/869/EEC of 9 October 1979 concerning the methods of measurement and frequencies of sampling and analysis of surface water intended for the abstraction of drinking water in the Member States. vol. OJ L. 1979. Available from: https://op.europa.eu/cs/publication-detail/-/publication/af622130-de1c-405e-bced-d93f3fc6de64/language-en.
  • [10] Norin M, Strömvaix AM. Leaching of organic contaminants from storage of reclaimed asphalt pavement. Environ Technol. 2004;25:323-40. DOI: 10.1080/09593330409355466.
  • [11] Becker L, Matuschek G, Lenoir D, Kettrup A. Leaching behaviour of wood treated with creosote. Chemosphere. 2001;42:301-8. DOI: 10.1016/S0045-6535(00)00071-0.
  • [12] Pozzoli L, Gilardoni S, Perrone MG, de Gennaro G, de Rienzo M, Vione D. Polycyclic aromatic hydrocarbons in the atmosphere: monitoring, sources, sinks and fate. I: monitoring and sources. Annali Di Chimica. 2004;94(1-2):17-33. DOI: 10.1002/adic.200490002.
  • [13] Jiang CQ, Alexander R, Kagi RI, Murray AP. Origin of perylene in ancient sediments and its geological significance. Org Geochem. 2000;31:1545-59. DOI: 10.1016/S0146-6380(00)00074-7.
  • [14] Barrado AI, García S, Castrillejo Y, Barrado E. Exploratory data analysis of PAH, nitro-PAH and hydroxy-PAH concentrations in atmospheric PM10-bound aerosol particles. Correlations with physical and chemical factors. Atmosph Environ. 2013;67:385-93. DOI: 10.1016/j.atmosenv.2012.10.030.
  • [15] Pachurka L, Gruszecka-Kosowska A, Kobus D, Sowka I. Assessment of inhalational exposure of residents of Wroclaw, Krakow and Warszawa to benzo[a]pyrene. Ecol Chem Eng A. 2018;25:39-49. DOI: 10.2428/ecea.2018.25(1)4.
  • [16] Mackay D, Shiu WY, Ma KC. Illustrated Handbook of Physical-Chemical Properties of Environmental Fate for Organic Chemicals. Boca Raton, FL: CRC Press; 1997. ISBN: 1566706874
  • [17] Sverdrup LE, Nielsen T, Krogh PH. Soil ecotoxicity of polycyclic aromatic hydrocarbons in relation to soil sorption, lipophilicity, and water solubility. Environ Sci Technol. 2002;36:2429-35. DOI: 10.1021/es010180s.
  • [18] Gundel LA, Lee VC, Mahanama KRR, Stevens RK, Daisey JM. Direct determination of the phase distributions of semi-volatile polycyclic aromatic hydrocarbons using annular denuders. Atmosph Environ. 1995;29:1719-33. DOI: 10.1016/1352-2310(94)00366-S.
  • [19] Chin YP, Aiken GR, Danielsen KM. Binding of pyrene to aquatic and commercial humic substances:  the role of molecular weight and aromaticity. Environ Sci Technol. 1997;31:1630-5. DOI: 10.1021/es960404k.
  • [20] Krauss M, Wilcke W. Predicting soil-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls by desorption with methanol-water mixtures at different temperatures. Environ Sci Technol. 2001;35:2319-25. DOI: 10.1021/es001616r.
  • [21] Organization WH. Guidelines for Drinking-water Quality: Recommendations. World Health Organization; 2004. Available from: https://www.who.int/water_sanitation_health/dwq/GDWQ2004web.pdf.
  • [22] Fernández P, Carrera G, Grimalt JO, Ventura M, Camarero L, Catalan J, et al. Factors governing the atmospheric deposition of polycyclic aromatic hydrocarbons to remote areas. Environ Sci Technol. 2003;37:3261-7. DOI: 10.1021/es020137k.
  • [23] Durant JL, Busby WF, Lafleur AL, Penman BW, Crespi CL. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Res/Genetic Toxicol. 1996;371:123-57. DOI: 10.1016/S0165-1218(96)90103-2.
  • [24] Allen JO, Dookeran NM, Taghizadeh K, Lafleur AL, Smith KA, Sarofim AF. Measurement of oxygenated polycyclic aromatic hydrocarbons associated with a size-segregated urban aerosol. Environ Sci Technol. 1997;31:2064-70. DOI: 10.1021/es960894g.
  • [25] Rosenkranz HS, Mermelstein R. The genotoxicity, metabolism and carcinogenicity of nitrated polycyclic aromatic hydrocarbons. J Environ Sci Health Part C: Environ Carcinogenesis Rev. 1985;3:221-72. DOI: 10.1080/10590508509373334.
  • [26] Diamond SA, Milroy NJ, Mattson VR, Heinis LJ, Mount DR. Photoactivated toxicity in amphipods collected from polycyclic aromatic hydrocarbon-contaminated sites. Environ Toxicol Chem. 2009;22:2752-60. DOI: 10.1897/02-640.
  • [27] Monson PD, Ankley GT, Kosian PA. Phototoxic response of Lumbriculus variegatus to sediments contaminated by polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 1995;14:891-4. DOI: 10.1002/etc.5620140522.
  • [28] Ankley GT, Collyard SA, Monson PD, Kosian PA. Influence of ultraviolet light on the toxicity of sediments contaminated with polycyclic aromatic hydrocarbons. Environ Toxicol Chem. 1994;13:1791-6. DOI: 10.1002/etc.5620131110.
  • [29] Ninane L, Kanari N, Criado C, Jeannot C, Evrard O, Neveux N. New Processes for Alkali Ferrate Synthesis. Ferrates, vol. 985. Am Chem Soc; 2008. ISBN: 9780841269613. DOI: 10.1021/bk-2008-0985.ch006.
  • [30] Alsheyab M, Jiang JQ, Stanford C. Electrochemical generation of ferrate(VI): Determination of optimum conditions. Desalination. 2010;254:175-8. DOI: 10.1016/j.desal.2009.11.035.
  • [31] Kudlek E. Identification of degradation by-products of selected pesticides during oxidation and chlorination processes. Ecol Chem Eng S. 2019;26:571-81. DOI: 10.1515/eces-2019-0042.
  • [32] Rahdar A, Rahdar S, Ahmadi S, Fu J. Adsorption of ciprofloxacin from aqueous environment by using synthesized nanoceria. Ecol Chem Eng S. 2019;26:299-311. DOI: 10.1515/eces-2019-0021.
  • [33] Sabliy L, Kuzminskiy Y, Zhukova V, Kozar M, Sobczuk H. New approaches in biological wastewater treatment aimed at removal of organic matter and nutrients. Ecol Chem Eng S. 2019;26:331-43. DOI: 10.1515/eces-2019-0023.
  • [34] Wacławek S, Padil VVT, Černík M. Major advances and challenges in heterogeneous catalysis for environmental applications: A review. Ecol Chem Eng S. 2018;25:9-34. DOI: 10.1515/eces-2018-0001.
  • [35] Vinod VTP, Wacławek S, Senan C, Kupčík J, Pešková K, Černík M, et al. Gum karaya (Sterculia urens) stabilized zero-valent iron nanoparticles: characterization and applications for the removal of chromium and volatile organic pollutants from water. RSC Adv. 2017;7:13997-4009. DOI: 10.1039/C7RA00464H.
  • [36] Wacławek S, Silvestri D, Hrabák P, Padil VVT, Torres-Mendieta R, Wacławek M, et al. Chemical oxidation and reduction of hexachlorocyclohexanes: A review. Water Res. 2019;162:302-19. DOI: 10.1016/j.watres.2019.06.072.
  • [37] Sharma VK. Potassium ferrate(VI): an environmentally friendly oxidant. Adv Environ Res. 2002;6:143-56. DOI: 10.1016/S1093-0191(01)00119-8.
  • [38] Jiang JQ. Advances in the development and application of ferrate(VI) for water and wastewater treatment. J Chem Technol Biotechnol. 2014;89:165-77. DOI: 10.1002/jctb.4214.
  • [39] Hrabák P, Homolková M, Wacławek S, Černík M. Chemical degradation of PCDD/F in contaminated sediment. Ecol Chem Eng S. 2016;23:473-82. DOI: 10.1515/eces-2016-0034.
  • [40] Walsh FC. Electrochemical technology for environmental treatment and clean energy conversion. Pure Appl Chem. 2001;73:1819-37. DOI: 10.1351/pac200173121819.
  • [41] Jiang JQ, Lloyd B. Progress in the development and use of ferrate(VI) salt as an oxidant and coagulant for water and wastewater treatment. Water Res. 2002;36:1397-408. DOI: 10.1016/S0043-1354(01)00358-X.
  • [42] Systém evidence kontaminovaných míst » SEKM. Available from: http://www.sekm.cz/.
  • [43] Licht S, Naschitz V, Halperin L, Halperin N, Lin L, Chen J, et al. Analysis of ferrate(VI) compounds and super-iron Fe(VI) battery cathodes: FTIR, ICP, titrimetric, XRD, UV/VIS, and electrochemical characterization. J Power Sourc. 2001;101:167-76. DOI: 10.1016/S0378-7753(01)00786-8.
  • [44] Patra D. Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons. Appl Spectrosc Rev. 2003;38:155-85. DOI: 10.1081/ASR-120021166.
  • [45] Douglas GS, McCarthy KJ, Dahlen DT, Seavey JA, Steinhauer WG, Prince RC, et al. The use of hydrocarbon analyses for environmental assessment and remediation. J Soil Contamin. 1992;1:197-216. DOI: 10.1080/15320389209383411.
  • [46] Boehm PD. 15 - Polycyclic Aromatic Hydrocarbons (PAHs). In: Morrison RD, Murphy BL, editors. Environmental Forensics, Burlington: Academic Press; 1964. DOI: 10.1016/B978-012507751-4/50037-9.
  • [47] Sharma VK. Disinfection performance of Fe(VI) in water and wastewater: a review. Water Sci Technol. 2007;55:225-32. DOI: 10.2166/wst.2007.019.
  • [48] 40 CFR 141.61 - Maximum contaminant levels for organic contaminants. USEPA, National Primary Drinking Water Regulations. 2002. Available from: https://www.law.cornell.edu/cfr/text/40/141.61.
  • [49] Sharma VK, Kazama F, Jiangyong H, Ray AK. Ferrates (iron(VI) and iron(V)): Environmentally friendly oxidants and disinfectants. J Water Health. 2005;3:45-58. Available from: https://pubmed.ncbi.nlm.nih.gov/15952452/
  • [50] Yunho L, Cho M, Kim YJ, Yoon J. Chemistry of ferrate (Fe(VI)) in aqueouus solution and its applications as a green chemical. J Ind Eng Chem. 2004;10:161-171. Available from: https://www.cheric.org/research/tech/periodicals/view.php?seq=441272.
  • [51] Baldantoni D, Morelli R, Bellino A, Prati MV, Alfani A, De Nicola F. Anthracene and benzo(a)pyrene degradation in soil is favoured by compost amendment: Perspectives for a bioremediation approach. J Hazard Mater. 2017;339:395-400. DOI: 10.1016/j.jhazmat.2017.06.043.
  • [52] Cerniglia CE. Biodegradation of Polycyclic Aromatic Hydrocarbons. Microorganisms to Combat Pollution. Dordrecht: Springer; 1992. DOI: 10.1007/978-94-011-1672-5_16.
  • [53] Liao X, Zhao D, Yan X, Huling SG. Identification of persulfate oxidation products of polycyclic aromatic hydrocarbon during remediation of contaminated soil. J Hazard Mater. 2014;276:26-34. DOI: 10.1016/j.jhazmat.2014.05.018.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a831a570-34e3-4ef0-942e-06bb80fe01f1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.