PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractional Diffusion Equation with Spherical Symmetry and Reactive Boundary Conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We analyze the behavior of a system governed by a fractional diffusion equation with spherical symmetry and subjected to integro–differential boundary conditions which can simulate sorption, desorption and reaction processes. We consider the processes defined in terms of kinetic equations that couple the surface processes with the bulk dynamic enable us to describe scenarios where the surface modifies the bulk dynamics and this may change the behavior on surface. This problem is presented in terms of a general formulation satisfying the mass balance and a particular application characterized by a reversible process on the surface is analyzed. For this application, we obtain exact solutions in terms of the Green function approach and evaluate the concentrations on the spherical surface and in the bulk for different processes. These results lead to a rich class of scenarios which can be related to an anomalous diffusion.
Wydawca
Rocznik
Strony
341--354
Opis fizyczny
Bibliogr. 46 poz., tab., wykr.
Twórcy
autor
  • Departamento de Engenharia Química, Universidade Federal do Paraná - Curitiba, PR 81531 - 990, Brazil
autor
  • Departamento de Física, Universidade Estadual de Ponta Grossa - Ponta Grossa, PR 84030-900, Brazil
autor
  • Departamento de Física, Universidade Estadual de Ponta Grossa - Ponta Grossa, PR 84030-900, Brazil
  • Departamento de Física, Universidade Estadual de Ponta Grossa - Ponta Grossa, PR 84030-900, Brazil
  • Departamento de Físisca, Universidade Federal do Rio Grande do Norte - Natal, RN 59072-970, Brazil
Bibliografia
  • [1] Strizhak PE, Macrokinetics of Chemical Processes on Porous Catalysts having regard to Anomalous Diffusion. Theoretical and Experimental Chemistry. 2004; 40: 203-208. doi: 10.1023/B:THEC.0000041803:99437.8b.
  • [2] Avnir D. The Fractal Approach to Heterogeneous Chemistry. Wiley-Interscience, New York, 1990. doi: 10.1002/pol.1990.140280608.
  • [3] Fibich G, Gannot I, Hammer A, Schochet S. Chemical Kinetics on Surfaces: A Singular Limit of Reaction-Diffusion System. SIAM Journal on Mathematical Analysis, 2006; 38 (5): 1371-1388. doi: 10.1137/050633767.
  • [4] S. Wang, Y. Zhang, X. Yang, P. Sun, Z. Dong, A. Liu, Ti-Fei Yuan, Pathological Brain Detection by a Novel Image Feature - Fractional Fourier Entropy. Entropy, 2015; 17 (12): 8278-8296. doi: 10.3390/e17127877.
  • [5] Zhang YD, Wang SH, Liu G, and Yang J. Computer-aided Diagnosis of Abnormal Breasts in Mammogram Images by Weighted-Type Fractional Fourier Transform. Advances in Mechanical Engineers 2016; 8 (2): 1-11. doi: 10.1177/1687814016634243.
  • [6] Zhang YD, Chen S, Wang SH, Yang JF, Phillips P. Magnetic resonance brain image classification based on weighted-type fractional Fourier transform and nonparallel support vector machine. International Journal of Imaging Systems and Technology. 2015; 25 (4): 317-327. doi: OI: 10.1002/ima.22144.
  • [7] Lenzi EK, Lenzi MK, Zola RS, Ribeiro HV, Zola FC, Evangelista LR. Gonçalves G. Reaction on a Solid Surface Supplied by an Anomalous Mass Transfer Source. Physica A, 2014; 410: 399-406. doi: 10.1016/j.physa.2014.05.05.
  • [8] Mendez V, Campos D, Bartumeus F. Stochastic Foundations in Movement Ecology. Springer, Heidelberg, 2014. ISBN: 978-3-642-39009-8, 978-3-662-50868-8.
  • [9] Ben-Avraham D, Havlin S. Diffusion and Reactions in Fractals and Disordered Systems. Cambridge University Press, Cambridge, 2005, pp. 207-248. ISBN: 9780521617208.
  • [10] Scott Fogler H. Elements of Chemical Reaction Engineering. Prentice Hall, New Jersy, 1999. ISBN: 0139737855 9780139737855.
  • [11] Lima DFB, Zanella FA, Lenzi MK, and Ndiaye PM. Modeling and Simulation of Water Gas Shift Reactor: An Industrial Case, Petrochemicals, Dr Vivek Patel (Ed.) 2012. ISBN: 978-953-51-0411-7.
  • [12] Bressloff PC. Stochastic Processes in Cell Biology, Springer, Heidelberg, 2014, pp. 497-575. doi: 10.1007/978-3-319-08488-6.
  • [13] Hristov J. A unified nonlinear fractional equation of the diffusion-controlled surfactant adsorption: Reap-praisal and new solution of the WardTordai problem. Journal of King Saud University – Science, 2016; 28: 7-13. doi: 10.1016/j.jksus.2015.03.008.
  • [14] Guimaraes VG, Ribeiro HV, Li Q, Evangelista LR, Lenzi EK, Zola RS. Unusual diffusing regimes caused by different adsorbing surfaces, Soft Matter, 2015; 11: 1658-66. doi: 10.1039/c5sm00151j.
  • [15] Friesen VC, Leitoles DP, Gonalves G, Lenzi EK, and Lenzi MK. Modeling Heavy Metal Sorption Kinetics Using Fractional Calculus, Mathematical Problems in Engineering, 2015; 2015: 549562. doi: 10.1155/2015/549562.
  • [16] Lenzi EK, Fernandes PRG, Petrucci T, Mukai H, Ribeiro HV. Anomalous - Diffusion Approach Applied to the Electrical Response of Water. Physical Review E, 2011; 84: 041128. doi: 10.1103/PhysRevE.84.041128.
  • [17] Ciuchi F, Mazzulla A, Scaramuzza N, Lenzi EK, Evangelista LR. Fractional Diffusion Equation and the Electrical Impedance: Experimental Evidence in Liquid-Crystalline Cells. The Journal of Physical Chemistry C 2012; 116: 8773-8777. doi: 10.1021/jp211097m.
  • [18] Crank J. The Mathematics of Diffusion. Oxford Science Publications, England, 1975. ISBN-10: 0198534116, 13: 978-0198534112.
  • [19] Pekalski A, Weron KS. Anomalous Diffusion: From Basics to Applications, Lecture Notes in Physics, vol. 519, Springer, Berlin, 1998. ISBN: 978-3-540-65416-2, 978-3-540-49259-7. doi: 10.1007/BFb0106828.
  • [20] Giona M, Roman HE. A theory of transport phenomena in disordered systems. The Chemical Engineering Journal,1992; 49 (1)-10. doi: 10.1016/0300-9467(92)85018-5.
  • [21] Snopok BA. Nonexponential Kinetic of Surface Chemical Reactions. Theoretical and Experimental Chemistry, 2014; 50: 67-95. doi: 10.1007/s11237-014-9351-0.
  • [22] Klafter J, Sokolov IM. First Steps in Random Walks: From Tools to Applications, Oxford, Oxford University Press, 2011. doi: 10.1093/acprof:oso/9780199234868.001.0001.
  • [23] Lenzi EK, Ribeiro HV, Martins J, Lenzi MK, Lenzi GG, Specchia S. Non-Markovian Diffusion Equation and Diffusion in a Porous Catalyst. Chemical Engineering Journal, 2011; 172: 1083-1087. doi: 10.1016/j.cej.2011.06.074.
  • [24] Metzler R, Klafter J. The Random Walk’s Guide to Anomalous Diffusion: a Fractional Dynamics Approach. Physics Report, 2000; 339 (1): 1-77. URL http://dx.doi.org/10.1016/S0370-1573(00)00070-3.
  • [25] Lucena LS, da Silva LR, Evangelista LR, Lenzi MK, Rossato R, Lenzi EK. Solutions for a Fractional Diffusion Equation with Spherical Symmetry using Green Function Approach. Chemical Physics, 2008, 344 (l): 90-94. doi: 10.1016/j.chemphys.2007.11.021.
  • [26] Giona M, Giustiniani M. Adsorption Kinetics on Fractal Surfaces, The Journal of Physical Chemistry, 1996; 100 (41): 1690-1699. doi: 10.1021/jp9615181.
  • [27] Hristov J. Approximate solutions to time-fractional models by integral balance approach, Chapter 5, In: Fractional Dynamics , C. Cattani, H. M. Srivastava, Xia-Jun Yang, (eds), De Gruyter Open, 2015, pp.78-109. doi: 10.1515/9783110472097-006.
  • [28] Yang XY, Baleanu D. Fractal Heat Conduction Problem Solved by Local Fractional Variation Iteration Method, Thermal Science, 2013; 17 (2): 625-628.
  • [29] Yang XJ, Baleanu D, Srivastava HM. Local fractional similarity solution for the diffusion equation defined on Cantor sets. Applied Mathemtatics Letters. 2015; 47: 5460. URL http://dx.doi.org/10.1016/j.aml.2015.02.024.
  • [30] Hristov J. Heat-Balance Integral to Fractional (Half-Time) Heat Diffusion Sub-Model, Thermal Science, 2010: 14 (2): 291-316. URL http://works.bepress.com/jordan_hristov/7/.
  • [31] Robson A, Burrage K, Leake MC. Inferring Diffusion in Single Live Cells at the Single-Molecule Level. Philosophical Transsaction of the Royal Society B, 2013; 368: 1471-2970. doi: 10.1098/rstb.2012.0029.
  • [32] Caputo M, Cametti C, Ruggero V. Time and Spatial Concentration Profile inside a Membrane by means of a Memory Formalism. Physica A, 2008; 387 (8-9): 2010-2018. doi: 10.1016/j.physa.2007.11.033.
  • [33] Caputo M, Cametti C. The Memory Formalism in the Diffusion of Drugs through Skin Membrane. Journal of Physics D: Applied Physics, 2009; 42 (12): 12505. URL http://stacks.iop.org/0022-3727/42/i=12/a=125505.
  • [34] Kosztolowicz T, Dworecki K, Lewandowska KD. Subdiffusion in a System with Thin Membranes. Physical Review E, 2012; 86: 021123. doi: 10.1103/PhysRevE.86.021123.
  • [35] Santoro PA, de Paula JL, Lenzi EK, Evangelista LR. Anomalous Diffusion governed by a Fractiort Diffusion Equation and the Electrical Response of an Electrolytic Cell. The Journal of Chemical Physics, 2011; 135: 114704. URL http://dx.doi.org/10.1063/1.3637944.
  • [36] Caspi A, Granek R, Elbaum M. Enhanced Diffusion in Active Intracellular Transport. Physical Review Letters, 2000; 85: 5655-8. doi: 10.1103/PhysRevLett.85.5655.
  • [37] Sokolov IM. Models of Anomalous Diffusion in Crowded Environments. Soft Matter, 2012; 8: 9043-9052. doi: 10.1039/C2SM25701G.
  • [38] Weigel AV, Simon B, Tamkun MM, Krapf D. Ergodic and Nonergodic Processes Coexist in the Plasma Membrane as Observed by Single-Molecule Tracking. Proceedings of the National. Academy of Science of the United States of America, 2011; 108 (16): 6439-6443. doi: 10.1073/pnas.1016325108.
  • [39] Jaing H, Cheng Y, Tuan L, An F, Jin K. A Fractal Theory Based Fractional Diffusion Model used for the Fast Desorption Process of Methane in Coal. Chaos, 2013; 23 (3): 033111. doi: 10.1063/1.4813597.
  • [40] Kosztolowicz T. Random Walk Model of Subdiffusion in a System with a Thin Membrane. Physical Review E, 2015; 91 (2): 022102. doi: 10.1103/PhysRevE.91.022102.
  • [41] Podlubny I. Fractional Differential Equations. Academic Press, San Diego CA, 1999. ISBN: 0125588402.
  • [42] Mathai AM, Saxena RK, Haubold HJ. The H-Function: Theory and Applications. Springer, New York, 2009. ISBN: 978-1-4419-0915-2, 978-1-4899-8458-6. doi: 10.1007/978-1-4419-0916-9.
  • [43] de Paula JL, Santoro PA, Zola RS, Lenzi EK, Evangelista LR, Ciuchi F, Mazzulla A, Scaramuzza N. Non-Debye Relaxation in the Dielectric Response of Nematic Liquid Crystals: Surface and Memory Effects in the Adsorption-Desorption Process of Ionic Impurities. Physical Review E, 2012; 86 (5-1): 051705. doi: 10.1103/PhysRevE.86.051705.
  • [44] Lenzi EK, dos Santos MAF, Lenzi MK, Vieira DS, da Silva LR. Solutions for a fractional diffusion equation: Anomalous diffusion and adsorption desorption processes, Journal of King Saud University - Science, 2016; 28 (l): 3-6. URL http://dx.doi.org/10.1016/j.jksus.2015.08.003.
  • [45] Lenzi EK, Yednak CAR, Evangelista LR. Non-Markovian diffusion and the adsorption- desorption process. Physical Review E, 2010; 81 (1): 011116. doi: 10.1103/PhysRevE.81.011116.
  • [46] Lenzi EK, Vieira DS, Lenzi MK, Leitoles DP. Solutions for a Fractional Diffusion Equation with Radial Symmetry and Integro-Differential Boundary Conditions, Thermal Science, 2015; 19 (1): S1-S6. doi: 10.2298/TSCI150114045L.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a82f3a00-3256-422c-813e-47579601b232
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.