PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermoelastic surface properties of seawater in coastal areas of the Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Correlations and data for the thermoelastic surface properties of seawater were determined by means of surface tension-temperature and surface pressure-area isotherm measurements performed in Baltic Sea coastal waters (Gulf of Gdańsk, Poland). Thermodynamic surface parameters examined include: surface free energy-γ, entropy, enthalpy, surface specific heat of air-seawater (AW), air-crude oil (AO) and crude oil-seawater (OW) interfaces, and the surface elasticity was quantified in terms of complex viscoelasticity modules with relaxation times of the transition processes. The spatial and temporal evolution of the parameters differed significantly from the literature data for seawater since the effect of surface active substances of natural and municipal origin was likely to be present in these coastal waters. The seawater surface turned out to have the viscoelastic 2D character as well as other interfacial systems AO and OW where three crude oils in contact with the seawater were studied for comparison. The dilational elasticity modules were found to follow the sequence EAW > EOW > EAO. Composite oil lens-covered seawater exhibited a significant drop of E from EAW (crude oil free surface) even for low oil coverage fraction F0. The obtained surface and interfacial tension-temperature dependences allowed to correct the spreading coefficient (S = γAW − γAO − γOW) to the desired temperature range, for example. The latter parameter with the sea surface elasticity data allows one to test the modified model of crude oil spreading proposed by the authors (Boniewicz-Szmyt and Pogorzelski, 2008), for spreading kinetics phenomenon at the surface-tension regime.
Czasopismo
Rocznik
Strony
25--38
Opis fizyczny
Bibliogr. 46 poz., rys., tab., wykr., fot.
Twórcy
  • Department of Physics, Gdynia Maritime University, Gdynia, Poland
  • Institute of Experimental Physics, University of Gdańsk, Gdańsk, Poland
Bibliografia
  • 1.Adamson, A.W., Gast, A.P., 1997. Physical Chemistry of Surfaces, 6th ed. Wiley and Sons, NY.
  • 2.Aksenenko, E.V., Kovalchuk, V.I., Fainerman, V.B., Miller, R., 2006. Surface dilational rheology of mixed adsorption layers at liquid interfaces. Adv. Colloid Interface Sci. 122, 57—66.
  • 3.Bauget, F., Langevin, D., Lenormand, R., 2001. Dynamic surface properties of asphaltenes and resins at the oil—water interface. J. Colloid Interface Sci. 239, 501—508.
  • 4.Birdi, K.S., 1997a. Surface crystallization of hexadecane at hexadecane/air and hexadecane/water interfaces and effect of proteins. Colloids Surf. Physicochem. Eng. Aspects 123—124, 543— 548.
  • 5.Birdi, K.S., 1997b. Prediction of critical temperature of n-alkanes and n-alkenes from surface tension vs. temperature data. Colloid Polym. Sci. 275, 561—566.
  • 6.Boniewicz-Szmyt, K., Pogorzelski, S.J., 2008. Crude oil derivatives on sea water: signatures of spreading dynamics. J. Mar. Syst. 74, S41—S51.
  • 7.Boniewicz-Szmyt, K., Pogorzelski, S.J., 2015. Mineral dust particles effect on viscoelasticity of seawater: Baltic Sea case studies. Mar. Environ. Res. (submitted).
  • 8.Buckley, J.S., Fan, T., 2007. Crude oil/brine interfacial tensions. Petrophysics 48, 175—185.
  • 9.Butt, H.-J., Graf, K., Kappl, M., 2003. Physics and Chemistry of Interfaces. Wiley-VCH Verlag & Co., New York.
  • 10.Cini, R., Loglio, G., Ficalbi, A., 1972. Temperature dependence of the surface tension of water by the equilibrium ring method. J. Colloid Interface Sci. 41, 287—297.
  • 11.D'Arrigo, J.S., 1984. Surface properties of microbubble-surfactant monolayers at the air/water interface. J. Colloid Interface Sci. 100, 106—111.
  • 12.Druffel, E.R.M., Bauer, J.E., 2000. Radiocarbon distributions in Southern Ocean dissolved and particulate organic matter. Geophys. Res. Lett. 27, 1495—1498.
  • 13.Ese, M-H., Galet, L., Clausse, D., Sjoblom, J., 1999. Properties of Langmuir surface and interfacial films built up by asphaltenes and resins: influence of chemical demulsifiers. J. Colloid Interface Sci. 220, 293—301.
  • 14.Freer, E.M., Svitova, T., Radke, C.J., 2003. The role of interfacial rheology in reservoir mixed wettability. J. Petrol. Sci. Eng. 39, 137—158.
  • 15.Garrett, W.D., 1967. The organic chemical composition of the ocean surface. Deep Sea Res. Oceanogr. Abstr. 14, 221—227.
  • 16.Gelbart, W.M., Ben-Shaul, A., Roux, D. (Eds.), 1994. Micelles, Membranes, Microemulsions and Monolayers. Springer-Verlag, New York, p. 608.
  • 17.Harkins, W.D., 1952. The Physical Chemistry of Surface Films. Reinhold, New York.
  • 18.Horvath-Szabo, G., Czarnecki, J., Masliyah, J.H., 2002. Sandwich structures at oil—water interfaces under alkaline conditions. J. Colloid Interface Sci. 253, 427—434.
  • 19.Hunter, K.A., Liss, P.S., 1981. Organic sea surface films. In: Duursma, E.K., Dawson, R. (Eds.), Marine Organic Chemistry. Elsevier Oceanography Series 31, New York, 259—298.
  • 20.Isehunwa, S.O., Olanisebe, E.B., 2012. Interfacial tension of crude oil-brine systems in the Niger delta. Int. J. Recent Res. Aspects 10, 460—465.
  • 21.Jarvis, N.L., Garrett, W.D., Scheiman, M.A., 1967. Surface chemical characterization of surface active material in sea surface. Limnol. Oceanogr. 12, 88—96.
  • 22.Jayalakshmi, Y., Ozanne, L., Langevin, D., 1995. Viscoelasticity of surfactant monolayers. J. Colloid Interface Sci. 170, 358—366.
  • 23.Joly, M., 1972. Rheological properties of monomolecular films. Part II. Experimental results, theoretical interpretation, applications. In: Matijevic, E. (Ed.), Surface and Colloid Science, vol. 5. Wiley, New York, 79—194.
  • 24.Joos, P., Bleys, G., 1983. Desorption from slightly soluble monolayer. Colloid Polym. Sci. 261, 1038—1042.
  • 25.Kato, T., Iriyama, K., Araki, T., 1992. The time of observation of π—A isotherms. III. Studies on the morphology of arachidic acid mono-layers, observed by transmission electron microscopy of replica samples of one-layer Langmuir—Blodgett films using plasma-po-lymerization. Thin Solid Films 210/211, 79—81.
  • 26.Kunieda, M., Nakaoka, K., Liang, Y., Miranda, C.R., Ueda, A., Takahashi, S., Okabe, H., Matsuoka, T., 2010. Self-accumulation of aromatics at the oil—water interface through weak hydrogen bonding. J. Am. Chem. Soc. 132, 18281—18286.
  • 27.Loglio, G., Tesei, U., Cini, R., 1984. Dilational properties of mono-layers at the oil—water interface. J. Colloid Interface Sci. 100, 393—396.
  • 28.Lucassen, J., 1992. Dynamic dilational properties of composite surfaces. Colloids Surf. A: Physicochem. Eng. Aspects 65, 139— 149.
  • 29.Mazurek, A.Z., Pogorzelski, S.J., Boniewicz-Szmyt, K., 2008. Evolution of natural sea surface film structure as a tool for organic matter dynamics tracing. J. Mar. Syst. 74, 52—64.
  • 30.Mohammed, R.A., Baily, A.I., Luckham, P.F., Taylor, S.E., 1993. Dewatering of crude oil emulsions. 2. Interfacial properties of the asphaltene constituents of crude oil. Colloids Surf. 80, 237— 245.
  • 31.Nino, M.R.R., Wilde, P.J., Clark, D.C., Patino, J.M.R., 1998. Surface dilational properties of protein and lipid films at the air—water interface. Langmuir 14, 2160—2166.
  • 32.Nour, A.H., Suliman, A., Hadow, M.M., 2008. Stabilization mechanism of water-in-crude oil emulsions. J. Appl. Sci. 8, 1571—1575.
  • 33.Olanisebe, E.B., Isehunwa, S.O., 2013. Effect of pH on interfacial tension and crude oil—water emulsion resolution in the Niger delta. J. Petrol. Gas Eng. 4, 198—202.
  • 34.Pogorzelski, S.J., 1992. Isotherms of natural sea surface films: a novel device for sampling and properties studies. Rev. Sci. Instrum. 63, 3773—3776.
  • 35.Pogorzelski, S.J., 1996. Application of 2D polymer film scaling theory to natural sea surface films. Colloids Surf. Physicochem. Eng. Aspects 114, 297—309.
  • 36.Pogorzelski, S.J., Kogut, A.D., 2003. Structural and thermodynamic signatures of marine microlayer surfactant films. J. Sea Res. 49, 347—356.
  • 37.Pogorzelski, S.J., Kogut, A.D., Mazurek, A.Z., 2006. Surface rheology parameters of source-specific surfactant films as indicators of organic matter dynamics. Hydrobiologia 554, 67—81.
  • 38.Pogorzelski, S.J., Stortini, A.M., Loglio, G., 1994. Natural surface film studies in shallow coastal waters of the Baltic and Mediterranean Seas. Cont. Shelf Res. 14, 1621—1643.
  • 39.Ravera, F., Ferrari, M., Santini, E., Liggieri, L., 2005. Influence of surface processes on the dilational visco-elasticity of surfactant solutions. Adv. Colloid Interface Sci. 117, 75—100.
  • 40.Sharqawy, M.H., Lienhard, J.H., Zubair, S.M., 2010. Thermophysical properties of seawater: a review of existing correlations and data. Desalin. Water Treat. 16, 354—380.
  • 41.Takamura, K., Loahardjo, N., Winoto, W., Buckley, J., Morrow, N.R., Kunieda, M., Liang, Y., Matsuoka, T., 2012. Spreading and retraction of spilled crude oil on sea water. In: Younes, M. (Ed.), Crude Oil Exploration in the World. In Tech, China, 107—124.
  • 42.Van Hunsel, J., Joos, P., 1989. Study of the dynamic interfacial tension at the oil/water interface. Colloid Polym. Sci. 267, 1026—1035.
  • 43.Van Vleet, E.S., Williams, P.M., 1983. Surface potential and film pressure measurements in seawater systems. Limnol. Oceanogr. 28, 401—414.
  • 44.Vargaftik, N.B., Volkov, B.N., Voljak, L.D., 1983. International tables of the surface tension of water. J. Phys. Chem. Ref. Data 12, 817—820.
  • 45.Yamabe, T., Moroi, Y., Abe, Y., Takahasi, T., 2000. Micelle formation and surface adsorption of N-(1,1-dihydroperfluoroalkyl)-N,N,N- trimethylammonium chloride. Langmuir 16, 9754—9758.
  • 46.Yarranton, H.W., Hussein, H., Masliyah, J.H., 2000. Water-in-hydrocarbon emulsions stabilized by asphaltenes at low concentrations. J. Colloid Interface Sci. 228, 52—63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a82d2e7d-c01b-4494-8501-7ec0ff25879b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.