Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Bulk density, porosity and thermophysical properties of the Sołtmany meteorite have been determined. The mean bulk density of the meteorite is 3.475‧103kg/m3, mean bulk density of the crust is 4.3‧103 kg/m3, grain density 3.71‧103 kg/m3, and porosity 6.4 ±} 0.4%. Mean specific heat capacity determined by DSC in temperature range between 223 and 823 K increases from 595 to 1046 J/(kg‧K), and is equal to 728 J/(kg‧K) at room temperature. Specific heat capacity of various samples is in the range 705–769 J/(kg‧K) at room temperature. Thermal capacity of Sołtmany chondrite is equal to 2.53‧106 J/(m3‧K), thermal diffusivity (1.5–1.8)‧10-6 m2/s, and thermal conductivity 3.9–4.5 W‧m–-1‧K-1at room temperature. Differential scanning calorimetry revealed two reversible phase transitions in the Sołtmany’s troilite: α/β transition at 423 K, and β/γ transition at 596.6 K.
Czasopismo
Rocznik
Tom
Strony
53--65
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
- Lodz University of Technology, Center of Mathematics and Physics, Al. Politechniki 11, 90-924 Łodź, Poland.
autor
- Lodz University of Technology, Institute of Applied Radiation Chemistry, Wroblewskiego 15, 93-590 Łodź, Poland.
autor
- Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland.
Bibliografia
- 1. Alton, J.H., Wentworth S.J., Gooding J.L., 1994 – Calorimetric thermometry of meteoritic troilite; preliminary thermometer relationships, Lunar and Planetary Science Conference, XXV, 25–26.
- 2. Alton, J.H., Gooding J.L., 1993 – Calorimetric thermometry of meteoritic troilite: a feasibly study. Lunar and Planetary Science Conference, XXIV, 21–22.
- 3. Alton, J.H., Wentworth S.J., Gooding J.L., 1993 – Calorimetric thermometry of meteoritic troilite: early reconnaissance. Meteoritics, 28, 315–316.
- 4. Ashby M., Sherdiff H., Cebon D., 2007 – Materials Engineering, Science, Processing and Design, Elsevier, Amsterdam.
- 5. Beech M., Coulson I.M., Wenshuang Nie, McCausland P., 2009 – The thermal and physical characteristics of the Gao-Guenie (H5) meteorite. Planetary and Space Science, 57, 764-770.
- 6. Chase M.W. Jr., Davies C.A., Downey J.R., Frurip D.J., McDonald R.A., Suverud A.N, 1985 – JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, Vol 14., Suppl. 1, P.1194.
- 7. Chaumard N., Devouard B., Delbo M., Provost A., Zanda B., 2012 – Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites. Icarus, 220, 65–73.
- 8. Consolmagno G.J., Britt D.T., Macke R.J., 2008 – The significance of meteorite density and porosity. Chemie der Erde, 68, 1–29.
- 9. Consolmagno G.J., Schaefer M.W., Schaefer B.E., Britt D.T., Macke R.J., Nolan M.C., Howell E.S., 2013a – Low temperature heat capacities of solar system materials. European Planetary Science Congress 2013, EPSC Abstracts, 8, EPSC 2013–2048.
- 10. Consolmagno G.J., Schaefer M.W., Schaefer B.E., Britt D.T., Macke R.J., Nolan M.C., Howell E.S., 2013b – The measurement of meteorite heat capacity at low temperatures using liquid nitrogen vaporization. Planetary and Space Science, 87, 146–156.
- 11. Ghosh A., McSween H.Y., 1999 – Temperature dependence of specific heat capacity and its effect on asteroid thermal models. Meteoritics and Planetary Science, 34, 121–127.
- 12. Hutchison R., 1996 – Chondrules and their associates in ordinary chondrities: A planetary connection? [in:] Hewins R. H., Jones R.H., and Scott E.R.D., (Eds) – Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge, 311–318.
- 13. Hutchison R., 2004 – Meteorites: A petrologic, chemical and isotopic synthesis. Cambridge University Press, Cambridge, UK.
- 14. Karwowski Ł., 2012 – Sołtmany meteorite. Meteorites, 2 (1-2), 15-30 (this number).
- 15. Karwowski Ł., Pilski A.S., Przylibski T.A., J. Gattacceca J., Rochette P., Łuszczek K., Kryza R., Woźniak B., Woźniak M., 2011 – A new meteorite fall at Soltmany, Poland. Meteoritics & Planetary Science, 46, Supplement, A5336.
- 16. Lauer H.V. Jr., Gooding J.L., 1996 – Troilite cosmothermometer: application to L-chondrites. Lunar and Planetary Science Conference, XXVII, 731–732.
- 17. Matsui T., Osako M. 1979 – Thermal property measurement of Yamato meteorites. Memoirs of National Institute of Polar Research Special Issue, 15, 243–252.
- 18. Opeil C.P., Consolmagno G.J., Britt D. T. 2010 – The thermal conductivity of meteorites: New measurements and analysis, Icarus, 208, 449–454.
- 19. Opeil C.P., Consolmagno G.J., Safarik D.J., Britt D. T., 2012 – Stony meteorite thermal properties and their relationship with meteorite chemical and physical states, Meteoritics & Planetary Science, 47(3), 319–329.
- 20. Osako M., 1981 – Thermal diffusivity measurements of chondrites and iron meteorite. Bulletin of the National Science Museum Tokyo, Ser. E, 4, Dec., 22, 1–8.
- 21. Przylibski T.A., Łuszczek K., 2012 – Bulk chemical composition of Sołtmany chondrite. Meteorites, 2 (1–2), 31-37 (this number).
- 22. Przylibski T.A., Pilski A.S., Zagożdżon P.P., Kryza R., 2003 – Petrology of the Baszkowka L5 chondrite: A record of surfaceforming processes on the parent body. Meteoritics and Planetary Science, 38 (6), 927–937.
- 23. Sanders I.S., 1996 – A chondrule forming scenario involving molten planetesimals. [in:] Hewins R.H., Jones R.H., and Scott E.R.D. (Eds) – Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge, 327–334.
- 24. Szurgot M., 2003 – Thermophysical properties of meteorites, Specific heat capacity. 2nd Meteorite Seminar in Olsztyn, 136–145 (in Polish).
- 25. Szurgot M., 2011a – On the specific heat capacity and thermal capacity of meteorites. 42nd Lunar and Planetary Science Conference, Abstract #1150.pdf
- 26. Szurgot M., 2011b – Thermal conductivity of meteorites. Meteoritics & Planetary Science, 46, Supplement, A230.
- 27. Szurgot M., Polański K., 2011 – Investigations of HaH 286 eucrite by analytical electron microscopy. Meteorites, 1, 29-38.
- 28. Szurgot M., Wojtatowicz., T.W., 2011 – Thermal diffusivity of meteorites. Meteoritics & Planetary Science, 46, Supplement, A230.
- 29. Szurgot M., Rożniakowski K., Wojtatowicz T. W, Polański K., 2008 – Investigation of microstructure and thermophysical properties of Morasko iron meteorites, Crystal Research and Technology, 43, 921–930.
- 30. Szurgot M., 2012a – On the heat capacity of asteroids, satellites and terrestrial planets, 43rd Lunar and Planetary Science Conference. Abstract #2626.pdf
- 31. Szurgot M., 2012b – Mean specific heat capacity of Mars, moons and asteroids, 75th Annual Meteoritical Society Meeting. Abstract #5035.pdf
- 32. Szurgot M., 2012c – Thermal capacity of Mars, Martian crust, mantle and core. 75th Annual Meteoritical Society Meeting. Abstract #5094.pdf
- 33. Szurgot M., 2012d – Heat capacity of Mars. Workshop on the Mantle of Mars. Abstract #6001.pdf
- 34. Szurgot M., 2013 – Heat capacity of asteroid Vesta, vestan core, mantle and crust. 76th Annual Meteoritical Society Meeting. Abstract #5264.pdf
- 35. Szurgot M., Adamus A., Wach R.A., 2013a – Troilite cosmothermometer in Sołtmany meteorite. 76th Annual Meteoritical Society Meeting. Abstract #5004.pdf
- 36. Szurgot M., Adamus A., Wach R.A., 2013b – Estimation of fusion crust temperature of Sołtmany meteorite by troilite thermometry. 76th Annual Meteoritical Society Meeting. Abstract #5033.pdf
- 37. Wach R.A., Adamus A., Szurgot M., 2013 – Specific heat capacity of Sołtmany and NWA 4560 meteorites. 76th Annual Meteoritical Society Meeting. Abstract #5017.pdf
- 38. Waples D.W., Waples J.S., 2004 – A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Minerals and nonporous rock, Natural Resources Research, 13, 97-122.
- 39. Yomogida K., Matsui T., 1983 – Physical properties of ordinary chondrites. Journal of Geophysical Research, 88, 9513–9533.
- 40. Yomogida K., Matsui T., 1981 – Physical properties of some Antarctic meteorites. Memories of the National Institute of Polar Research., Special Issue, 20, 384–394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8232c77-f349-4abe-a052-aa824b397875