PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermophysical properties of the Sołtmany meteorite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bulk density, porosity and thermophysical properties of the Sołtmany meteorite have been determined. The mean bulk density of the meteorite is 3.475‧103kg/m3, mean bulk density of the crust is 4.3‧103 kg/m3, grain density 3.71‧103 kg/m3, and porosity 6.4 ±} 0.4%. Mean specific heat capacity determined by DSC in temperature range between 223 and 823 K increases from 595 to 1046 J/(kg‧K), and is equal to 728 J/(kg‧K) at room temperature. Specific heat capacity of various samples is in the range 705–769 J/(kg‧K) at room temperature. Thermal capacity of Sołtmany chondrite is equal to 2.53‧106 J/(m3‧K), thermal diffusivity (1.5–1.8)‧10-6 m2/s, and thermal conductivity 3.9–4.5 W‧m–-1‧K-1at room temperature. Differential scanning calorimetry revealed two reversible phase transitions in the Sołtmany’s troilite: α/β transition at 423 K, and β/γ transition at 596.6 K.
Czasopismo
Rocznik
Strony
53--65
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
autor
  • Lodz University of Technology, Center of Mathematics and Physics, Al. Politechniki 11, 90-924 Łodź, Poland.
autor
  • Lodz University of Technology, Institute of Applied Radiation Chemistry, Wroblewskiego 15, 93-590 Łodź, Poland.
  • Wrocław University of Technology, Faculty of Geoengineering, Mining and Geology, Wybrzeże S. Wyspiańskiego 27, 50-370 Wrocław, Poland.
Bibliografia
  • 1. Alton, J.H., Wentworth S.J., Gooding J.L., 1994 – Calorimetric thermometry of meteoritic troilite; preliminary thermometer relationships, Lunar and Planetary Science Conference, XXV, 25–26.
  • 2. Alton, J.H., Gooding J.L., 1993 – Calorimetric thermometry of meteoritic troilite: a feasibly study. Lunar and Planetary Science Conference, XXIV, 21–22.
  • 3. Alton, J.H., Wentworth S.J., Gooding J.L., 1993 – Calorimetric thermometry of meteoritic troilite: early reconnaissance. Meteoritics, 28, 315–316.
  • 4. Ashby M., Sherdiff H., Cebon D., 2007 – Materials Engineering, Science, Processing and Design, Elsevier, Amsterdam.
  • 5. Beech M., Coulson I.M., Wenshuang Nie, McCausland P., 2009 – The thermal and physical characteristics of the Gao-Guenie (H5) meteorite. Planetary and Space Science, 57, 764-770.
  • 6. Chase M.W. Jr., Davies C.A., Downey J.R., Frurip D.J., McDonald R.A., Suverud A.N, 1985 – JANAF Thermochemical Tables, 3rd ed., J. Phys. Chem. Ref. Data, Vol 14., Suppl. 1, P.1194.
  • 7. Chaumard N., Devouard B., Delbo M., Provost A., Zanda B., 2012 – Radiative heating of carbonaceous near-Earth objects as a cause of thermal metamorphism for CK chondrites. Icarus, 220, 65–73.
  • 8. Consolmagno G.J., Britt D.T., Macke R.J., 2008 – The significance of meteorite density and porosity. Chemie der Erde, 68, 1–29.
  • 9. Consolmagno G.J., Schaefer M.W., Schaefer B.E., Britt D.T., Macke R.J., Nolan M.C., Howell E.S., 2013a – Low temperature heat capacities of solar system materials. European Planetary Science Congress 2013, EPSC Abstracts, 8, EPSC 2013–2048.
  • 10. Consolmagno G.J., Schaefer M.W., Schaefer B.E., Britt D.T., Macke R.J., Nolan M.C., Howell E.S., 2013b – The measurement of meteorite heat capacity at low temperatures using liquid nitrogen vaporization. Planetary and Space Science, 87, 146–156.
  • 11. Ghosh A., McSween H.Y., 1999 – Temperature dependence of specific heat capacity and its effect on asteroid thermal models. Meteoritics and Planetary Science, 34, 121–127.
  • 12. Hutchison R., 1996 – Chondrules and their associates in ordinary chondrities: A planetary connection? [in:] Hewins R. H., Jones R.H., and Scott E.R.D., (Eds) – Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge, 311–318.
  • 13. Hutchison R., 2004 – Meteorites: A petrologic, chemical and isotopic synthesis. Cambridge University Press, Cambridge, UK.
  • 14. Karwowski Ł., 2012 – Sołtmany meteorite. Meteorites, 2 (1-2), 15-30 (this number).
  • 15. Karwowski Ł., Pilski A.S., Przylibski T.A., J. Gattacceca J., Rochette P., Łuszczek K., Kryza R., Woźniak B., Woźniak M., 2011 – A new meteorite fall at Soltmany, Poland. Meteoritics & Planetary Science, 46, Supplement, A5336.
  • 16. Lauer H.V. Jr., Gooding J.L., 1996 – Troilite cosmothermometer: application to L-chondrites. Lunar and Planetary Science Conference, XXVII, 731–732.
  • 17. Matsui T., Osako M. 1979 – Thermal property measurement of Yamato meteorites. Memoirs of National Institute of Polar Research Special Issue, 15, 243–252.
  • 18. Opeil C.P., Consolmagno G.J., Britt D. T. 2010 – The thermal conductivity of meteorites: New measurements and analysis, Icarus, 208, 449–454.
  • 19. Opeil C.P., Consolmagno G.J., Safarik D.J., Britt D. T., 2012 – Stony meteorite thermal properties and their relationship with meteorite chemical and physical states, Meteoritics & Planetary Science, 47(3), 319–329.
  • 20. Osako M., 1981 – Thermal diffusivity measurements of chondrites and iron meteorite. Bulletin of the National Science Museum Tokyo, Ser. E, 4, Dec., 22, 1–8.
  • 21. Przylibski T.A., Łuszczek K., 2012 – Bulk chemical composition of Sołtmany chondrite. Meteorites, 2 (1–2), 31-37 (this number).
  • 22. Przylibski T.A., Pilski A.S., Zagożdżon P.P., Kryza R., 2003 – Petrology of the Baszkowka L5 chondrite: A record of surfaceforming processes on the parent body. Meteoritics and Planetary Science, 38 (6), 927–937.
  • 23. Sanders I.S., 1996 – A chondrule forming scenario involving molten planetesimals. [in:] Hewins R.H., Jones R.H., and Scott E.R.D. (Eds) – Chondrules and the protoplanetary disk. Cambridge University Press, Cambridge, 327–334.
  • 24. Szurgot M., 2003 – Thermophysical properties of meteorites, Specific heat capacity. 2nd Meteorite Seminar in Olsztyn, 136–145 (in Polish).
  • 25. Szurgot M., 2011a – On the specific heat capacity and thermal capacity of meteorites. 42nd Lunar and Planetary Science Conference, Abstract #1150.pdf
  • 26. Szurgot M., 2011b – Thermal conductivity of meteorites. Meteoritics & Planetary Science, 46, Supplement, A230.
  • 27. Szurgot M., Polański K., 2011 – Investigations of HaH 286 eucrite by analytical electron microscopy. Meteorites, 1, 29-38.
  • 28. Szurgot M., Wojtatowicz., T.W., 2011 – Thermal diffusivity of meteorites. Meteoritics & Planetary Science, 46, Supplement, A230.
  • 29. Szurgot M., Rożniakowski K., Wojtatowicz T. W, Polański K., 2008 – Investigation of microstructure and thermophysical properties of Morasko iron meteorites, Crystal Research and Technology, 43, 921–930.
  • 30. Szurgot M., 2012a – On the heat capacity of asteroids, satellites and terrestrial planets, 43rd Lunar and Planetary Science Conference. Abstract #2626.pdf
  • 31. Szurgot M., 2012b – Mean specific heat capacity of Mars, moons and asteroids, 75th Annual Meteoritical Society Meeting. Abstract #5035.pdf
  • 32. Szurgot M., 2012c – Thermal capacity of Mars, Martian crust, mantle and core. 75th Annual Meteoritical Society Meeting. Abstract #5094.pdf
  • 33. Szurgot M., 2012d – Heat capacity of Mars. Workshop on the Mantle of Mars. Abstract #6001.pdf
  • 34. Szurgot M., 2013 – Heat capacity of asteroid Vesta, vestan core, mantle and crust. 76th Annual Meteoritical Society Meeting. Abstract #5264.pdf
  • 35. Szurgot M., Adamus A., Wach R.A., 2013a – Troilite cosmothermometer in Sołtmany meteorite. 76th Annual Meteoritical Society Meeting. Abstract #5004.pdf
  • 36. Szurgot M., Adamus A., Wach R.A., 2013b – Estimation of fusion crust temperature of Sołtmany meteorite by troilite thermometry. 76th Annual Meteoritical Society Meeting. Abstract #5033.pdf
  • 37. Wach R.A., Adamus A., Szurgot M., 2013 – Specific heat capacity of Sołtmany and NWA 4560 meteorites. 76th Annual Meteoritical Society Meeting. Abstract #5017.pdf
  • 38. Waples D.W., Waples J.S., 2004 – A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Minerals and nonporous rock, Natural Resources Research, 13, 97-122.
  • 39. Yomogida K., Matsui T., 1983 – Physical properties of ordinary chondrites. Journal of Geophysical Research, 88, 9513–9533.
  • 40. Yomogida K., Matsui T., 1981 – Physical properties of some Antarctic meteorites. Memories of the National Institute of Polar Research., Special Issue, 20, 384–394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a8232c77-f349-4abe-a052-aa824b397875
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.