PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Objective: This review aims to provide a comprehensive overview of omics fields - including genomics, epigenomics, transcriptomics, proteomics, metabolomics, single-cell multiomics, microbiomics, and radiomics - and to highlight the significance of integrating these datasets to tackle complex biological questions in systems biology and precision medicine. Methods: The review analyzes current literature across various omics domains, focusing on their individual contributions to cellular functions and their integration challenges. It discusses successful integration examples and addresses issues like data heterogeneity across databases. Results: Omics integration significantly enhances our understanding of biological systems, with each field offering unique insights. Despite challenges with data inconsistencies, successful cases show the potential of integrated omics in advancing personalized medicine, drug discovery, and disease research. Conclusions: Advancing omics integration is essential for breakthroughs in personalized medicine and complex disease studies. Interdisciplinary collaboration will be crucial to overcoming data challenges and realizing the full potential of omics in biomedical advancements.
Rocznik
Strony
22--36
Opis fizyczny
Bibliogr. 111 poz., rys., tab.
Twórcy
  • Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
  • Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
  • Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
autor
  • Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
Bibliografia
  • 1. Horgan RP, Kenny LC. “Omic” technologies: genomics, transcriptomics, proteomics and metabolomics. Obstet Gynaecol. 2011;13(3):189-95.
  • 2. Marrone P. Chambers, RT. [no article title]. Etica e Polit. 2013;15(1):583-605.
  • 3. Yugi K, Kubota H, Hatano A, Kuroda S. Trans-Omics: How to reconstruct biochemical networks across multiple “Omic” layers. Trends Biotechnol. 2016;34(4):276-90. doi: http://dx.doi.org/10.1016/j.tibtech.2015.12.013.
  • 4. Kreitmaier P, Katsoula G, Zeggini E. Insights from multi-Omics integration in complex disease primary tissues. Trends Genet. 2023;39(1):46-58. doi: https://doi.org/10.1016/j.tig.2022.08.005.
  • 5. Larue RTHM, Defraene G, De Ruysscher D, Lambin P, Van Elmpt W. Quantitative radiomics studies for tissue characterization: A review of technology and methodological procedures. Br J Radiol. 2017;90(1070):20160665.
  • 6. Yang L, Li M, Shan Y, Shen S, Bai Y, Liu H. Recent advances in lipidomics for disease research. J Sep Sci. 2016;39(1):38-50.
  • 7. Barh D, Khan MS, Davies E, editors. PlantOmics: The omics of plant science. New York: Springer; 2015.
  • 8. Ha T-Y. MicroRNAs in human diseases: From cancer to cardiovascular disease. Immune Netw. 2011;11(3):135.
  • 9. Hasin Y, Seldin M, Lusis A. Multi-omics approaches to disease. Genome Biol. 2017;18(1):83.
  • 10. Gomez-Cabrero D, Abugessaisa I, Maier D, Teschendorff A, Merkenschlager M, Gisel A, et al. Data integration in the era of OMICS: Current and future challenges. BMC Syst Biol. 2014;8(Suppl 2):I1.
  • 11. Verma V, Simone CB, Krishnan S, Lin SH, Yang J, Hahn SM. The Rrise of radiomics and implications for oncologic oanagement. J Natl Cancer Inst. 2017;109(7):2016-18.
  • 12. Holliday R. Epigenetics: A historical overview. Epigenetics. 2006;1(2):76-80.
  • 13. Clark RJ, Felsenfeld G. 1972 Nature Publishing Group. Nat New Biol. 1972;240:226-29.
  • 14. Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. 2022;63(2):100164. doi: https://doi.org/10.1016/j.jlr.2021.100164.
  • 15. Shao Y, Le W. Recent advances and perspectives of metabolomics-based investigations in Parkinson’s disease. Mol Neurodegener. 2019;14(1):1-12.
  • 16. Berg G, Rybakova D, Fischer D, Cernava T, Vergès M-CC, Charles T, et al. Correction to: Microbiome definition re-visited: old concepts and new challenges. Microbiome. 2020;8(1):1-22.
  • 17. Encarnación-Guevara S. The dawn and the first twenty-five years of proteomics in Mexico: A personal chronicle. Boletín Médico Del Hosp Infant México (English Ed). 2017;74(3):208-11. doi: http://dx.doi.org/10.1016/j.bmhime.2017.03.002.
  • 18. Mayerhoefer ME, Materka A, Langs G, Häggström I, Szczypiński P, Gibbs P, et al. Introduction to radiomics. J Nucl Med. 2020;61(4):488-95.
  • 19. Lee J, Hyeon DY, Hwang D. Single-cell multiomics: technologies and data analysis methods. Exp Mol Med. 2020;52(9):1428-42. doi: http://dx.doi.org/10.1038/s12276-020-0420-2.
  • 20. Dong ZC, Chen Y. Transcriptomics: Advances and approaches. Sci China Life Sci. 2013;56(10):960-67.
  • 21. Mohr AE, Ortega-Santos CP, Whisner CM, Klein-Seetharaman J, Jasbi P. Navigating challenges and opportunities in multi-Omics integration for personalized healthcare. Biomedicines. 2024;12(7):1496.
  • 22. Stępień E, Rząca C, Moskal P. Radiovesicolomics-new approach in medical imaging. Front Physiol. 2022;13:1-11.
  • 23. Kang M, Ko E, Mersha TB. A roadmap for multi-omics data integration using deep learning. Brief Bioinform. 2022;23(1):1-16.
  • 24. Sarkans U, Füllgrabe A, Ali A, Athar A, Behrangi E, Diaz N, et al. From ArrayExpress to BioStudies. Nucleic Acids Res. 2021;49(D1):D1502-6.
  • 25. Yu F, Li K, Li S, Liu J, Zhang Y, Zhou M, et al. CFEA: A cell-free epigenome atlas in human diseases. Nucleic Acids Res. 2020;48(D1):D40-44.
  • 26. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M. New approach for understanding genome variations in KEGG. Nucleic Acids Res. 2019;47(D1):D590-95.
  • 27. Lun ATL, Chen Y, Smyth GK. A practical guide to che Cancer Genome Atlas. Statistical Genomics. 2016;1418:391-416.
  • 28. Navarro Gonzalez J, Zweig AS, Speir ML, Schmelter D, Rosenbloom KR, Raney BJ, et al. The UCSC genome browser database: 2021 update. Nucleic Acids Res. 2021;49(D1):D1046-57.
  • 29. Wang Z, Lachmann A, Ma’ayan A. Mining data and metadata from the gene expression omnibus. Biophys Rev. 2019;11(1):103-10.
  • 30. Miggiels P, Wouters B, van Westen GJP, Dubbelman AC, Hankemeier T. Novel technologies for metabolomics: More for less. TrAC - Trends Anal Chem. 2019;120:1-9.
  • 31. Rouached H, Arpat AB, Poirier Y. Regulation of phosphate starvation responses in plants: Signaling players and cross-talks. Mol Plant. 2010;3(2):288-99.
  • 32. Mevik B-H, Wehrens R. PDF hosted at the Radboud Repository of the Radboud University Nijmegen Article information: J Stat Softw. 2007;18(2):3-6.
  • 33. Haug K, Cochrane K, Nainala VC, Williams M, Chang J, Jayaseelan KV, et al. MetaboLights: A resource evolving in response to the needs of its scientific community. Nucleic Acids Res. 2020;48(D1):D440-44.
  • 34. Misra BB. New software tools, databases, and resources in metabolomics: Updates from 2020. Metabolomics. 2021;17(5):80301.
  • 35. Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun. 2019;10(1):1-11. doi: http://dx.doi.org/10.1038/s41467-019-13036-1.
  • 36. Oliveira FS, Brestelli J, Cade S, Zheng J, Iodice J, Fischer S, et al. MicrobiomeDB: A systems biology platform for integrating, mining and analyzing microbiome experiments. Nucleic Acids Res. 2018;46(D1):D684-91.
  • 37. Abdill RJ, Adamowicz EM, Blekhman R. Public human microbiome data are dominated by highly developed countries. PLoS Biol. 2022;20(2):1-12.
  • 38. Bakker OB, Aguirre-Gamboa R, Sanna S, Oosting M, Smeekens SP, Jaeger M, et al. Integration of multi-omics data and deep phenotyping enables prediction of cytokine responses. Nat Immunol. 2018;19(7):776-86.
  • 39. Ha S, Choi H, Paeng JC, Cheon GJ. Radiomics in oncological PET/CT: A methodological overview. Nucl Med Mol Imaging. 2019;53(1):14-29.
  • 40. Chetan MR, Gleeson FV. Radiomics in predicting treatment response in non-small-cell lung cancer: Current status, challenges and future perspectives. Eur Radiol. 2021;31(2):1049-58.
  • 41. Aslam B, Basit M, Nisar MA, Khurshid M, Rasool MH. Proteomics: Technologies and their applications. J Chromatogr Sci. 2017;55(2):182-96.
  • 42. Lindskog C, Thul PJ. The Human Protein Atlas - A spatial map of the human proteome. Protein Sci. 2018;27(1):233-44.
  • 43. Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al. The PRIDE database resources in 2022: A hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543-52.
  • 44. Schoch CL, Ciufo S, Domrachev M, Hotton CL, Kannan S, Khovanskaya R, et al. NCBI Taxonomy: A comprehensive update on curation, resources and tools. Database (Oxford). 2020;2020:baaa062.
  • 45. Adams MD, Kelley JM, Gocayne JD, Dubnick MAK, Polymeropoulos MH, Xiao H, et al. Complementary DNA sequencing: Expressed sequence tags and human genome project. Science. 1991;252(5013):1651-56.
  • 46. Versteeg R, van Schaik BDC, van Batenburg MF, Roos M, Monajemi R, Caron H, et al. The human transcriptome map reveals extremes in gene dentistry, intron length, GC content, and repeat pattern for domains of highly and weakly expressed genes. Genome Res. 2003;13(9):1998-2004.
  • 47. Kiniry SJ, O’Connor PBF, Michel AM, Baranov P V. Trips-Viz: A transcriptome browser for exploring ribo-seq data. Nucleic Acids Res. 2019;47(D1):D847-52.
  • 48. Alonso L, Piron A, Morán I, Guindo-Martínez M, Bonàs-Guarch S, Atla G, et al. TiGER: The gene expression regulatory variation landscape of human pancreatic islets. Cell Rep. 2021;37(2):109807.
  • 49. Waller T, Gubała T, Sarapata K, Piwowar M, Jurkowski W. DNA microarray integromics analysis platform. BioData Min. 2015;8(1):1-23.
  • 50. Piwowar M, Kułaga T. Directional association measurement in contingency tables: Genomic Case. J Comput Biol. 2019;26(3):235-40.
  • 51. Collins FS, Morgan M, Patrinos A. The human genome project: Lessons from large-scale biology. Science. 2003;300(5617):286-90.
  • 52. Marigorta UM, Rodríguez JA, Gibson G, Navarro A. Replicability and prediction: Lessons and challenges from GWAS. Trends Genet. 2018;34(7):504-17. doi: https://doi.org/10.1016/j.tig.2018.03.005.
  • 53. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS Discovery: Biology, function, and translation. Am J Hum Genet. 2017;101(1):5-22. doi: http://dx.doi.org/10.1016/j.ajhg.2017.06.005.
  • 54. Uffelmann E, Huang QQ, Munung NS, de Vries J, Okada Y, Martin AR, et al. Genome-wide association studies. Nat Rev Methods Prim. 2021;1(1):1-21. doi: http://dx.doi.org/10.1038/s43586-021-00056-9.
  • 55. Almouzni G, Cedar H. Maintenance of epigenetic information. Cold Spring Harb Perspect Biol. 2016;8(5):a019372.
  • 56. Feinberg AP. The key role of epigenetics in human disease prevention and mitigation. N Engl J Med. 2018;378(14):1323-34.
  • 57. Soshnev AA, Josefowicz SZ, Allis CD. Greater than the sum of parts: Complexity of the dynamic epigenome. Mol Cell. 2016;62(5):681-94. doi: http://dx.doi.org/10.1016/j.molcel.2016.05.004.
  • 58. Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. J Cell Biol. 2015;208(1):33-52.
  • 59. Huang J. Digital Commons @ University of South Florida cell-free DNA methylation. Signatures in Cancer Detection and Classification [Internet]. 2022 [cited: 2024 Apr 14]. Available from: https://digitalcommons.usf.edu/etd/9378.
  • 60. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies. PLoS Comput Biol. 2017;13(5):1-23.
  • 61. Piwowar M, Kocemba-Pilarczyk KA, Piwowar P. Regularization and grouping-omics data by GCA method: A transcriptomic case. PLoS One. 2018;13(11):1-14.
  • 62. Byron SA, Van Keuren-Jensen KR, Engelthaler DM, Carpten JD, Craig DW. Translating RNA sequencing into clinical diagnostics: Opportunities and challenges. Nat Rev Genet. 2016;17(5):257-71. doi: http://dx.doi.org/10.1038/nrg.2016.10.
  • 63. Yu AM, Jian C, Yu AH, Tu MJ. RNA therapy: Are we using the right molecules? Pharmacol Ther. 2019;196:91-104. doi: https://doi.org/10.1016/j.pharmthera.2018.11.011.
  • 64. Krasniqi E, Sacconi A, Marinelli D, Pizzuti L, Mazzotta M, Sergi D, et al. MicroRNA-based signatures impacting clinical course and biology of ovarian cancer: a miRNOmics study. Biomark Res. 2021;9(1):1-17.
  • 65. Erson-Bensan AE. Introduction to microRNAs in biological systems. Methods Mol Biol. 2014:1107:1-14.
  • 66. Li T, Leong MH, Harms B, Kennedy G, Chen L. MicroRNA-21 as a potential colon and rectal cancer biomarker. World J Gastroenterol. 2013;19(34):5615-21.
  • 67. Casamassimi A, Federico A, Rienzo M, Esposito S, Ciccodicola A. Transcriptome profiling in human diseases: New advances and perspectives. Int J Mol Sci. 2017;18(8):1652.
  • 68. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165(3):535-50. doi: http://dx.doi.org/10.1016/j.cell.2016.03.014.
  • 69. Smith LM, Kelleher NL. Proteoforms as the next proteomics currency. IIdentifying precise molecular forms of proteins can improve our understanding of function. Science. 2018;359(6380):1106-8.
  • 70. Aebersold R, Agar JN, Amster IJ, Baker MS, Bertozzi CR, Boja ES, et al. How many human proteoforms are there? Nat Chem Biol. 2018;14(3):206-14. doi: http://dx.doi.org/10.1038/nchembio.2576.
  • 71. Leduc RD, Schwämmle V, Shortreed MR, Cesnik AJ, Solntsev SK, Shaw JB, et al. ProForma: A standard proteoform notation. J Proteome Res. 2018;17(3):1321-25.
  • 72. Smith LM, Agar JN, Chamot-Rooke J, Danis PO, Ge Y, Loo JA, et al. The human proteoform project: Defining the human proteome. Sci Adv. 2021;7(46):1-8.
  • 73. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608-17.
  • 74. Pinu FR, Beale DJ, Paten AM, Kouremenos K, Swarup S, Schirra HJ, et al. Systems biology and multi-omics integration: Viewpoints from the metabolomics research community. Metabolites. 2019;9(4):1-31.
  • 75. Wörheide MA, Krumsiek J, Kastenmüller G, Arnold M. Multi-omics integration in biomedical research - A metabolomics-centric review. Anal Chim Acta. 2021;1141:144-62.
  • 76. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9):373-78.
  • 77. Nicholson JK, Lindon JC, Holmes E. Metabonomics’ understanding the metabolic. Xenobiotica. 1999;29(11):1181-89.
  • 78. Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: A knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37(Suppl 1):603-10.
  • 79. Wishart DS, Guo AC, Oler E, Wang F, Anjum A, Peters H, et al. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022;50(D1):D622-31.
  • 80. Wen L, Li G, Huang T, Geng W, Pei H, Yang J, et al. Single-cell technologies: From research to application. Innovation. 2022;3(6):100342. doi: https://doi.org/10.1016/j.xinn.2022.100342.
  • 81. Dey SS, Kester L, Spanjaard B, Bienko M, Van Oudenaarden A. Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol. 2015;33(3):285-89.
  • 82. Zhang Y, Huang Y, Hu L, Cheng T. New insights into human Hematopoietic stem and progenitor cells via single-cell omics. Stem Cell Rev Reports. 2022;18(4):1322-36. doi: https://doi.org/10.1007/s12015-022-10330-2.
  • 83. Kilian M, Chapple ILC, Hannig M, Marsh PD, Meuric V, Pedersen AML, et al. The oral microbiome: An update for oral healthcare professionals. Br Dent J. 2016;221(10):657-66.
  • 84. Proctor LM, Creasy HH, Fettweis JM, Lloyd-Price J, Mahurkar A, Zhou W, et al. The integrative Human Microbiome Project. Nature. 2019;569(7758):641-48.
  • 85. Lloyd-Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, et al. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature. 2017;550(7674):61-66. doi: http://dx.doi.org/10.1038/nature23889.
  • 86. Akila A, Parameswari R, Jayakumari C. Big Data in healthcare: Management, analysis, and future Prospects. In: Jaya A, Kalaiselvi K, Goyal D, AL-Jumeily D, editors. Handbook of Intelligent Healthcare Analytics: Knowledge Engineering with Big Data Analytics. Beverly: Scrivener Publishing LLC; 2022. p. 309-26.
  • 87. Hosny A, Aerts HJ, Mak RH. Handcrafted versus deep learning radiomics for prediction of cancer therapy response. Lancet Digit Heal. 2019;1(3):e106-7. doi: http://dx.doi.org/10.1016/S2589-7500(19)30062-7.
  • 88. Rolle K, Piwecka M, Belter A, Wawrzyniak D, Jeleniewicz J, Barciszewska MZ, et al. The sequence and structure determine the function of mature human miRNAs. PLoS One. 2016;11(3):e0151246.
  • 89. Alberti C, Cochella L. A framework for understanding the roles of miRNAs in animal development. Dev. 2017;144(14):2548-59.
  • 90. Maes O, Chertkow H, Wang E, Schipper H. MicroRNA: Implications for Alzheimer’s disease and other human CNS disorders. Curr Genomics. 2009;10(3):154-68.
  • 91. Chauhan P, Pramodh S, Hussain A, Elsori D, Lakhanpal S, Kumar R, et al. Understanding the role of miRNAs in cervical cancer pathogenesis and therapeutic responses. Front Cell Dev Biol. 2024;12:1-20.
  • 92. Calin GA, Cimmino A, Fabbri M, Ferracin M, Wojcik SE, Shimizu M, et al. MiR-15a and miR-16-1 cluster functions in human leukemia. Proc Natl Acad Sci USA. 2008;105(13):5166-71.
  • 93. Hata A. Functions of microRNAs in cardiovascular biology and disease. Annu Rev Physiol. 2013;75:69-93.
  • 94. Van Eyk JE, Snyder MP. Precision medicine: Role of Proteomics in Changing Clinical Management and Care. J Proteome Res. 2019;18(1):1-6.
  • 95. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D. Methods of integrating data to uncover genotype-phenotype interactions. Nat Rev Genet. 2015;16(2):85-97. doi: http://dx.doi.org/10.1038/nrg3868.
  • 96. Himmelstein DS, Lizee A, Hessler C, Brueggeman L, Chen SL, Hadley D, et al. Systematic integration of biomedical knowledge prioritizes drugs for repurposing. Elife. 2017;6:e26726.
  • 97. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, et al. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018;46(W1):W486-94.
  • 98. Zhou G, Pang Z, Lu Y, Ewald J, Xia J. OmicsNet 2.0: A web-based platform for multi-omics integration and network visual analytics. Nucleic Acids Res. 2022;50(W1):W527-33.
  • 99. Liu T, Salguero P, Petek M, Martinez-Mira C, Balzano-Nogueira L, Ramšak Z, et al. PaintOmics 4: New tools for the integrative analysis of multi-omics datasets supported by multiple pathway databases. Nucleic Acids Res. 2022;50(W1):W551-59.
  • 100. Domingo-Fernández D, Mubeen S, Marín-Llaó J, Hoyt CT, Hofmann-Apitius M. PathMe: Merging and exploring mechanistic pathway knowledge. BMC Bioinformatics. 2019;20(1):1-12.
  • 101. Domingo-Almenara X, Siuzdak G. Metabolomics Data processing using XCMS methods. Mol Biol. 2020;2104:11-24.
  • 102. Turek C, Wróbel S, Piwowar M. OmicsON - Integration of omics data with molecular networks and statistical procedures. PLoS One. 2020;15:1-13.
  • 103. Zhang S, Cooper-Knock J, Weimer AK, Shi M, Kozhaya L, Unutmaz D, et al. Multiomic analysis reveals cell-type-specific molecular determinants of COVID-19 severity. Cell Syst. 2022;13(8):598-614.e6. doi: https://doi.org/10.1016/j.cels.2022.05.007.
  • 104. Perez-Riverol Y, Zorin A, Dass G, Vu MT, Xu P, Glont M, et al. Quantifying the impact of public omics data. Nat Commun. 2019;10(1):3512.
  • 105. Dass G, Vu MT, Xu P, Audain E, Hitz MP, Gruning BA, et al. The omics discovery REST interface. Nucleic Acids Res. 2020;48(W1):W380-84.
  • 106. Cooper LAD, Demicco EG, Saltz JH, Powell RT, Rao A, Lazar AJ. PanCancer insights from the Cancer Genome Atlas: The pathologist’s perspective. J Pathol. 2018;244(5):512-24.
  • 107. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): An immeasurable source of knowledge. Wspolczesna Onkol. 2015;1A:A68-77.
  • 108. Danaher P, Warren S, Lu R, Samayoa J, Sullivan A, Pekker I, et al. Pan- -cancer adaptive immune resistance as defined by the Tumor Inflammation Signature (TIS): Results from The Cancer Genome Atlas (TCGA). J Immunother Cancer. 2018;6(1):1-17.
  • 109. Hutter C, Zenklusen JC. The Cancer Genome Atlas: Creating lasting value beyond its data. Cell. 2018;173(2):283-5. doi: https://doi.org/10.1016/j.cell.2018.03.042.
  • 110. Li H, Yang Y, Hong W, Huang M, Wu M, Zhao X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct Target Ther. 2020;5(1):1-23. doi: http://dx.doi.org/10.1038/s41392-019-0089-y.
  • 111. Koscielny G, An P, Carvalho-Silva D, Cham JA, Fumis L, Gasparyan R, et al. Open targets: A platform for therapeutic target identification and Validation. Nucleic Acids Res. 2017;45(D1):D985-94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a82268f7-3939-4a2a-91a6-c2eeb6f6bfa8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.