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1. Introduction

Information retrieval and data forecasting ard gté opened questions not only
in mathematics and computer science. For exampleritcess of planning can meet
such a problem: what is the next value that isodatur knowledge, for example any
wanted value by tomorrow. This planning may deahwiuying or selling, with
anticipating costs, expenses or with foreseeing Bngortant value. The key
questions in planning and scheduling, also in dmtisnaking and knowledge
representation [1] are dealing with appropriateoinimfation modeling and
forecasting. Two-dimensional data can be regardgubants on the curve. Classical
polynomial interpolations and extrapolations (Lam@ Newton, Hermite) are
useless for data forecasting, because values taagxérapolated (for example the
stock quotations or the market prices) representirmoous or discrete data and they
do not preserve a shape of the polynomial. Thisepdp dealing with data
forecasting by using the method of Probabilisticds® Combination (PNC) and
extrapolation as the extension of interpolatione Nalues which are retrieved,
represented by curve points, consist of informatigmich allows us to extrapolate
and to forecast some data for example before makuherision [2].

If the probabilities of possible actions are knowren some criteria are to be
applied: Laplace, Bayes, Wald, Hurwicz, Savage, déeldehmann [3] and others
[4]. But this paper considers information retrieaald data forecasting based only
on 2D nodes. Proposed method of Probabilistic N&tmsbination (PNC) is used
in data reconstruction and forecasting. PNC mets®s two-dimensional data for
knowledge representation [5] and computational fations [6]. Also medicine [7],
industry and manufacturing are looking for the roethconnected with geometry of
the curves [8]. So suitable data representation pretise reconstruction or
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extrapolation [9] of the curve is a key factor iramy applications of artificial
intelligence: forecasting, planning, scheduling dedision making.

The author wants to approach a problem of cunerpolation [10-12] and data
forecasting by characteristic points. Proposed otetielies on nodes combination
and functional modeling of curve points situatetiieen the basic set of key points
and outside of this set. The functions that arel usecomputations represent whole
family of elementary functions together with inwerdunctions: polynomials,
trigonometric, cyclometric, logarithmic, exponehtand power function. These
functions are treated as probability distributiomndtions in the range [0;1].
Nowadays methods apply mainly polynomial functiof, example Bernstein
polynomials in Bezier curves, splines and NURBS].[Bt Bezier curves do not
represent the interpolation method and cannot bd e extrapolation. Numerical
methods for data reconstruction are based on poiiai@r trigonometric functions,
for example Lagrange, Newton, Aitken and Hermite¢huods. These methods have
some weak sides [14] and are not sufficient foveunterpolation and extrapolation
in the situations when the curve cannot be buildpblynomials or trigonometric
functions. Proposed 2D point retrieval and forangsimethod is the functional
modeling via any elementary functions and it heipgo fit the curve.

Author presents novel Probabilistic Nodes Combama{PNC) method of curve
interpolation-extrapolation and takes up PNC metlbbdwo-dimensional curve
modeling via the examples using the family of HurwRadon matrices (MHR
method) [15], but not only (other nodes combinatjofhe method of PNC requires
minimal assumptions: the only information aboutuave is the set of at least two
nodesp = (x,y) O R?% i = 1,2,..n. Proposed PNC method is applied in data
forecasting and information retrieval via differembefficients: polynomial,
sinusoidal, cosinusoidal, tangent, cotangent, Itdgaic, exponential, arc sin, arc
cos, arc tan, arc cot or power. Function for PNICutations is chosen individually
at each modeling and it represents probabilityribistion function of parameter
a [0 [0;1] for every point situated between two suctesiterpolation knots. For
more precise modeling knots ought to be settletegt points of the curve, for
example local minimum or maximum, highest pointtleé curve in a particular
orientation, convexity changing or curvature exiaem

The goal of this paper is to answer the questiow to build the data model by
a set of knots [16] and how to extrapolate the {38in

2. Data Simulation and Extrapolation

The method of PNC is computing points between tuccassive nodes of the
curve: calculated points are interpolated and petenzed for real number
a [0 [0;1] in the range of two successive nodes. PN@hatkuses the combinations
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of nodespi=(X3,y1), P2=(%2,Y2),..., Pn=(%,Yn) @s h(p,p2....Pm) andm = 1,2,..n to
interpolate second coordingtas (2) for first coordinatein (1):

c=ali+ (1-o)Xi+l, i=1.2,..n-1, (1)

Y(©) =yLy, + A= p)Yiy + y A= y) [N(Py, Pyseens Py (2)
a O [0;1], vy = F(e) 0O[0;1], F:[0;1]—[0;1], F(0)=0, F(1)=1 and F is strictly
monotonic.

PNC extrapolation requiresoutside of [0;1]a < O (anticipating points right of
last node forc > x,) or o > 1 (extrapolating values left of first node foK xy),
y=F(0), F:P—R, P [0 [01], F(0)=0, F(1)=1. Here are the examplefhi@omputed
for MHR method [17]:

h(p,, p, :sz+ﬁxl (3)
X,

or

1
h( Pis P2y Pss p4) :ﬁ(xlXZyl T XXY5 T XX, Y~ X1X4y3) +
XX

1
+———5 (XX Y, + XX, Y, + XX, Y, — %XY,)
X, +X,

Three other examples of nodes combinations:

WX Yo X o h(p,, p,) = XX, +y,y, or the simplest
XY, X%

h(Py, Pysees P) = 0.
Nodes combination is chosen individually for eaeliadand it depends on the type
of information modeling. Formulas (1)-(2) represenirve parameterization as
olP:

x(0) = al+ (1-0) X
and

y(@)=F(a)ly, + Q- F(a))y.. + F (@)@~ F(a)) [h(py, P;r--r Py »

y(@) =F(@) (Y, = i + A= F(@)) [h(py, Pareess Pp)) + Vi
Proposed parameterization gives us the infinite bemof possibilities for
calculations (determined by choicefoindh) as there is the infinite number of data
for reconstruction and forecasting. Nodes combamats the individual feature of

each modeled data. Coefficient F(a) and nodes combinatidnare key factors in
PNC interpolation and forecasting.

h(p,, p,) =
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2.1.  Extended distribution functions in PNC forecasng

Points settled between the nodes are computed &t method. Each real
numberc [ [a;b] is calculated by a convex combinatior a Ca + (1 - a) Cb for
a:% [[0;1]. Key question is dealing with coefficieptin (2). The simplest
way of PNC calculation meais= 0 andy = o (basic probability distribution). Then
PNC represents a linear interpolation and extraipmlaMHR method [18] is not a
linear interpolation. MHR [19] is the example of €Mhodeling. Each interpolation
requires specific distribution of parameterandy (1)-(2) depends on parameter
a 0 [0;1]:

y =F(a), F:[0;1]—-[0;1], F(0)=0, F(1)=1
and F is strictly monotonic. Coefficient is calculated using different functions
(polynomials, power functions, sine, cosine, tamgecotangent, logarithm,
exponent, arc sin, arc cos, arc tan or arc cot, ialgerse functions) and choice of
function is connected with initial requirements ati@a specifications. Different
values of coefficieny are connected with applied functioR&x). These functions
v = F(o) represent the examples of probability distribatfonctions for random
variable oJ[0;1] and real numbes > 0: y=¢°, y=sin(e*n/2), y=sin¥(a-n/2),
y=1-cas(a’>n/2), y=1-ccs’(a-n/2), y=tan(a®n/4), y=tan*(a-m/4), y=log,(a*+1),
y=log,(a+1), y=(2°-1), y=2/n-arcsin(a’), y=(2/r-arcsina)®, y=1-2f-arccos(a’),
v=1-(2/n-arccosu)’, y=4/m-arctan(a®), y=(4/m-arctana)’, y=ctg(n/2-a’n/4),
y=ctg*(n/2-a-n/4), y=2-4fn-arcctg(a’), v=(2-4/n-arcctga)’,
v=p-a*+(1-p)-a, y=p-0*+(1P)-a,..., y=p-a*+(1P)-a for BO[0;1] and kON or
y=1-(01-a)3".

Functions above, used in calculations, are strictly monotonic for random
variable a[J[0;1] asy = F(a) is probability distribution function. There is @n
important probability distribution in mathematicbeta distribution where for
example y=3u>-2¢®, y=4a’>-3a¢* or y=20-0>. Also inverse functionsF* are
appropriate fory calculations. Choice of function and valsedepends on data
specifications and individual requirements duriaggdnterpolation.

Extrapolation demands thatis out of range [0;1], for exampéél(1;2] or al[-
1;0), withy = F(a) as probability distribution function and thEns called extended
distribution function in the case of extrapolatiddome of these functiong are
useless for data forecasting because they do st @xa” y=a”) if o < 0 in (1).
Then it is possible to change parameter 0 into corresponding > 1 and formulas
(1)-(2) turn to equivalent equations:

c=ali+l + (l-o)¥i, i=1,2,...n-1, 4)
y(c) = y[yi+1 + (1_V)yi + y(l_ V) [h(pp P2y pm)' )
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PNC forecasting foa < 0 ora > 1 uses functioF as extended distribution function
for the arguments fronP [0 [071] , v = F(a), F:P—R, F(0)=0, F(1)=1 andF has to
be strictly monotonic only foa[][0;1]. Data simulation and modeling far< O or
a > 1 is done using the same function F(a) that is earlier defined faJ[0;1].

3. PNC Extrapolation and Data Trends

Unknown data are modeled (interpolated or extrdapd)aby the choice ¢
nodes, determining specific nodes combination amdbabilistic distributior
function to show trend of values: increasing, dasigg or stable. Less complica
models takeh(p.,p,....pm) = 0 and then the formula of interpolation (2) Kkeaas
follows:

y(©) =y + A= )) Y-
It is linear interpolation for basic probabilitystiibution § = a).

Example 1
Nodes are (1;3), (3:1), (5;3) and (7;3),= 0, extended distributiony = o?,
extrapolation is computed with (49) fora > 1.

Fig. 1. PNC for 9 interpolated points between nodes anxti@golated point

Anticipated points (stable trend): (7.2;3), (7.4;8J.6;3), (7.8;3), (8;3), (8.2;3
(8.4;3), (8.6:3), (8.8;3) far = 1.1, 1.2, ..., 1.9.
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Example 2
Nodes (1;3), (3;1), (5:3) and (7;2h = 0, extended distributiory=F(a)=o’.
Forecasting is computed as (4)-(5) with 1:

Fig. 2. PNC with 9 interpolated points between nodes asgtfapolated point
Extrapolated pointsdecreasing trend): (7.2;1.79), (7.4;1.56), (7.6:1.87.8;1.04)
(8;0.75), (8.2;0.44), (8.4;0.11), (8.6;24), (8.8-0.61) fora. = 1.1, 1.2, ..., 1.9.

Example 3
Nodes (1;3), (3:1), (5:3) and (7;4)= 0, extended distributioy=F(a)=0:

Fig. 3. PNC fa 9 interpolated points between nodes and 9 exlaégmb points

Forecast (increasing trend): (7.2;4.331), (7.48)72(7.6;5.197), (7.8;5.744
(8;6.375), (8.2;7.096), (8.4;7.913), (8.6;8.838)8(9.859) form = 1.1, 1.2, ..., 1.!
These three examples 1-3 (Fi@Lwith nodes combinatioh = O differ at
fourth node and extended probability distributiemdtions y=F(a). Much more
possibilities of modeling are connected with a choiof nodes combinatic
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h(pw,P2,---.Pm)- MHR method [20] uses theombination (3) with good featur
connected with orthogonal rows and columns at Hiz-Radon family of matrices
[21-22]:

— yi yi+1
h(pi’pi+)__ i+ +
' XI )g ' Xi+1

and then (2):y(c) = y 0y, + Q=) Y + Y= Y IT(P,, Py) -
Here are two examples 4 and 5 of PNC method wittRMidmbination (3

)(i

Example 4
Nodes are (1;3), (3;1) and (5;3), extended distidouy = F(0) = o’. Forecasting is
computed with (4)-(5) foe. > 1:

Fig. 4. PNC modeling with 9 interpolated points betweenasodnd 9 extrapolated poir

Extrapolation (decreasing trend): (5.2;2.539), ;6684), (5.6;0.338), (5.-1.603),
(6;-4.25), (6.2;-7.724), (6.4:2.155), (6.€-17.68), (6.8;-24.443)
foro=1.1,1.2,...,1.9.
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Example 5
Nodes (1;3), (3;1) and (5;3), extended distributi= F(a) = «*°. This forecasting is
computed with (4)-(5) foe. > 1:

Fig. 5.  PNC modeling with 9 interpolated points betweenasdnd 9 extrapolated poir

Value forecasting (decreasing trend): (5.2;2.698%.4;2.196), (5.6;1.487
(5.8;0.543), (6;-0.657), (6.2;-2.136), (631915), (6.6;-6.016), (6.8;-8.461)
foro=1.1,1.2, ..., 1.9.

Now let us consider PNC method with other functiF than power functions,
a < 0 for extrapolation (1§2) and nodes combinatith=0.

Example 6
Nodes (2;2), (3;1), (4;2), (5;1), (6;2) and extahdestributionF(a)=sin(a-n/2), h=0:

Fig. 6. PNC modeling with 9 interpolatqabints between nodes and 9 extrapolated pr
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Extrapolation points (increasing trend): (6.1;2)156.2;2.309), (6.3;2.454
(6.4;,2.588), (6.5;2.707), (6.6;2.809), (6.7;2.891)6.8;2.951), (6.9;2.98¢
fora=-0.1,-0.2, ..., -0.9.

Example 7
Nodes (2;2), (3;1), (4;2), (5:1), (6:2) and extahdkstibution y=F(a)=sin*(a.-n/2),
h=0:

Fig. 7. PNC modeling with nine interpolated points betwesrtcessive nodes and ni
extrapolated points right of the last node.

Forecast points (increasing trend): (6.1;2.0042;2603), (6.3;2.094), (6.4;2.20:
(6.5;2.354), (6.6;2.53), (6.7;2.707), (6.8;2.86)9(B.964) fora = -0.1, -0.2, ..., -
0.9.

These two examples 6 and 7 (Fig)pwith nodes combinatioh=0 and the
same set of nodes differ only at extended proliglalistribution functionsy = F(a).
Fig.8 is the example of nodes combinatives (3) in MHR metho

Example 8
Nodes (2;2), (3;1), (4;1), (5;1), (6;2) and extehddistribution functior
v=F(a)=2"-1:
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Fig. 8. PNC modeling with nine interpolated points betwesrtcessive nodes and ni
extrapolated points right of the last node.

Forecast points (increasing trend): (6.1;2.067.2;86129), (6.3;2.188), (6.4;2.24.
(6.5;2.293), (6.6;2.34), (6.7;2.384), (6.8;2.426), (6.9;2.464
foro=-0.1,-0.2, ..., -0.9.

Examples that are calculated above have one funy = F(a) and one
combinationh for all ranges between nodes. But it is possibleréate a model wit
functionsy, = Fi(a) and combinationdy individually for every range of nod
(pi;pi+1)- Then it enables very precise modeling of dataveéen each successive p
of nodes. Each data point is interpolated or exletpd by PNC via three factol
the set of nodes, probability distribution functy = F(a) and nodes combinatidn
These thee factors are chosen individually for each ditarefore this informatio
about modeled points seems to be enough for spdeMlC data retrieval ar
forecasting. Functiony is selected via the analysis of known points b
extrapolation, we may assurhe= 0 at the beginning and after some time exchi
h by more adequate.

These eight examples illustrate the forecastingsmhe values in plannir
process, for example anticipation of some cost®xqrenses and foreseeing
prices or other significamtata in the process of planni

4, Conclusions

The paper is dealing with information retrieval addta forecasting. Tr
method of Probabilistic Nodes Combination (PNC) des interpolation an
extrapolation of twadimensional curves using nodes comtions and different
coefficientsy: polynomial, sinusoidal, cosinusoidal, tangentangent, logarithmic
exponential, arc sin, arc cos, arc tan, arc copawer function, also invers
functions. Function foi calculations is chosen individually at e case and it is
treated as probability distribution functiop:depends on initial requirements ¢
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data specifications. PNC method leads to pointapxtiation and interpolation via
discrete set of fixed knots. Main features of PN&hod are: PNC method develops
a linear interpolation and extrapolation into othemctions as probability
distribution functions; PNC is a generalizationMiiR method via different nodes
combinations; nodes combination and coefficieate crucial in the process of data
probabilistic retrieval and forecasting. Future k®are going to precise the choice
and features of nodes combinations and coefficyerdlso to implementation of
PNC in handwriting and signature recognition.
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Abstract

Proposed method, called Probabilistic Nodes ContibimgPNC), is the method of
2D data interpolation and extrapolation. Nodestgated as characteristic points of
information retrieval and data forecasting. PNC eliod) via nodes combination
and parametey as probability distribution function enables 2Dircextrapolation
and interpolation. Two-dimensional information i®aeled via nodes combination
and some functions as continuous probability digtron functions: polynomial,
sine, cosine, tangent, cotangent, logarithm, expipr&c sin, arc cos, arc tan, arc cot
or power function. Extrapolated values are useth@support in data forecasting.
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Streszczenie

Autorska metoda Probabilistycznej Kombinacji ¢xMw- Probabilistic Nodes
Combination (PNC) jest wykorzystywana do interppla¢ ekstrapolacji
dwuwymiarowych danych. ¥ty traktowane s jako punkty charakterystyczne
informaciji, ktéra ma b§ odtwarzana lub przewidywana. Dwuwymiarowe dagme s
interpolowane lub ekstrapolowane z wykorzystanieianych funkcji rozktadu
prawdopodobigstwa: po¢gowych, wielomianowych, wyktadniczych,
logarytmicznych, trygonometrycznych, cyklometrycghy W pracy pokazano
propozycg metody ekstrapolowania danych jako pomoc w przewshiu trendu
dla nieznanych warfai.



