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1. Introduction 
Information retrieval and data forecasting are still the opened questions not only 

in mathematics and computer science. For example the process of planning can meet 
such a problem: what is the next value that is out of our knowledge, for example any 
wanted value by tomorrow. This planning may deal with buying or selling, with 
anticipating costs, expenses or with foreseeing any important value. The key 
questions in planning and scheduling, also in decision making and knowledge 
representation [1] are dealing with appropriate information modeling and 
forecasting. Two-dimensional data can be regarded as points on the curve. Classical 
polynomial interpolations and extrapolations (Lagrange, Newton, Hermite) are 
useless for data forecasting, because values that are extrapolated (for example the 
stock quotations or the market prices) represent continuous or discrete data and they 
do not preserve a shape of the polynomial. This paper is dealing with data 
forecasting by using the method of Probabilistic Nodes Combination (PNC) and 
extrapolation as the extension of interpolation. The values which are retrieved, 
represented by curve points, consist of information which allows us to extrapolate 
and to forecast some data for example before making a decision [2]. 

If the probabilities of possible actions are known, then some criteria are to be 
applied: Laplace, Bayes, Wald, Hurwicz, Savage, Hodge-Lehmann [3] and others 
[4]. But this paper considers information retrieval and data forecasting based only 
on 2D nodes. Proposed method of Probabilistic Nodes Combination (PNC) is used 
in data reconstruction and forecasting. PNC method uses two-dimensional data for 
knowledge representation [5] and computational foundations [6]. Also medicine [7], 
industry and manufacturing are looking for the methods connected with geometry of 
the curves [8]. So suitable data representation and precise reconstruction or 
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extrapolation [9] of the curve is a key factor in many applications of artificial 
intelligence: forecasting, planning, scheduling and decision making.  

The author wants to approach a problem of curve interpolation [10-12] and data 
forecasting by characteristic points. Proposed method relies on nodes combination 
and functional modeling of curve points situated between the basic set of key points 
and outside of this set. The functions that are used in computations represent whole 
family of elementary functions together with inverse functions: polynomials, 
trigonometric, cyclometric, logarithmic, exponential and power function. These 
functions are treated as probability distribution functions in the range [0;1]. 
Nowadays methods apply mainly polynomial functions, for example Bernstein 
polynomials in Bezier curves, splines and NURBS [13]. But Bezier curves do not 
represent the interpolation method and cannot be used for extrapolation. Numerical 
methods for data reconstruction are based on polynomial or trigonometric functions, 
for example Lagrange, Newton, Aitken and Hermite methods. These methods have 
some weak sides [14] and are not sufficient for curve interpolation and extrapolation 
in the situations when the curve cannot be build by polynomials or trigonometric 
functions. Proposed 2D point retrieval and forecasting method is the functional 
modeling via any elementary functions and it helps us to fit the curve. 

Author presents novel Probabilistic Nodes Combination (PNC) method of curve 
interpolation-extrapolation and takes up PNC method of two-dimensional curve 
modeling via the examples using the family of Hurwitz-Radon matrices (MHR 
method) [15], but not only (other nodes combinations). The method of PNC requires 
minimal assumptions: the only information about a curve is the set of at least two 
nodes pi = (xi,yi) ∈ R2, i = 1,2,…n. Proposed PNC method is applied in data 
forecasting and information retrieval via different coefficients: polynomial, 
sinusoidal, cosinusoidal, tangent, cotangent, logarithmic, exponential, arc sin, arc 
cos, arc tan, arc cot or power. Function for PNC calculations is chosen individually 
at each modeling and it represents probability distribution function of parameter  
α ∈ [0;1] for every point situated between two successive interpolation knots. For 
more precise modeling knots ought to be settled at key points of the curve, for 
example local minimum or maximum, highest point of the curve in a particular 
orientation, convexity changing or curvature extrema.  

The goal of this paper is to answer the question: how to build the data model by 
a set of knots [16] and how to extrapolate the points? 

2. Data Simulation and Extrapolation 
The method of PNC is computing points between two successive nodes of the 

curve: calculated points are interpolated and parameterized for real number  
α ∈ [0;1] in the range of two successive nodes. PNC method uses the combinations 
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of nodes p1=(x1,y1), p2=(x2,y2),…, pn=(xn,yn) as h(p1,p2,…,pm) and m = 1,2,…n to 
interpolate second coordinate y as (2) for first coordinate c in (1): 

c = α⋅xi + (1-α)⋅xi+1,    i = 1,2,…n-1, (1) 

),...,,()1()1()( 211 mii ppphyycy ⋅−+−+⋅= + γγγγ , (2) 

α ∈ [0;1], γ = F(α) ∈[0;1], F:[0;1]→[0;1], F(0)=0, F(1)=1 and F is strictly 
monotonic. 

PNC extrapolation requires α outside of [0;1]: α < 0 (anticipating points right of 
last node for c > xn) or α > 1 (extrapolating values left of first node for c < x1), 
γ=F(α), F:P→R, ]1;0[⊃P , F(0)=0, F(1)=1. Here are the examples of h computed 
for MHR method [17]: 
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Three other examples of nodes combinations: 
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Nodes combination is chosen individually for each data and it depends on the type 
of information modeling. Formulas (1)-(2) represent curve parameterization as  
α ∈ P: 

x(α) =  α⋅xi + (1-α)⋅xi+1   
and 

),...,,())(1)(())(1()()( 211 mii ppphFFyFyFy ⋅−+−+⋅= + ααααα , 

1211 )),...,,())(1(()()( ++ +⋅−+−⋅= imii yppphFyyFy ααα . 

Proposed parameterization gives us the infinite number of possibilities for  
calculations (determined by choice of F and h) as there is the infinite number of data 
for reconstruction and forecasting. Nodes combination is the individual feature of 
each modeled data. Coefficient γ = F(α) and nodes combination h are key factors in 
PNC interpolation and forecasting. 
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2.1. Extended distribution functions in PNC forecasting 
Points settled between the nodes are computed using PNC method. Each real 

number c ∈ [a;b] is calculated by a convex combination c = α ⋅ a + (1 - α) ⋅ b for 

ab

cb

−
−=α ∈[0;1]. Key question is dealing with coefficient γ in (2). The simplest 

way of PNC calculation means h = 0 and γ = α (basic probability distribution). Then 
PNC represents a linear interpolation and extrapolation. MHR method [18] is not a 
linear interpolation. MHR [19] is the example of PNC modeling. Each interpolation 
requires specific distribution of parameter α and γ (1)-(2) depends on parameter  
α ∈ [0;1]:  

γ = F(α),  F:[0;1]→[0;1],  F(0) = 0,  F(1) = 1 
and F is strictly monotonic. Coefficient γ is calculated using different functions 
(polynomials, power functions, sine, cosine, tangent, cotangent, logarithm, 
exponent, arc sin, arc cos, arc tan or arc cot, also inverse functions) and choice of 
function is connected with initial requirements and data specifications. Different 
values of coefficient γ are connected with applied functions F(α). These functions  
γ = F(α) represent the examples of probability distribution functions for random 
variable α∈[0;1] and real number s > 0: γ=αs, γ=sin(αs·π/2), γ=sins(α·π/2),  
γ=1-cos(αs·π/2), γ=1-coss(α·π/2), γ=tan(αs·π/4), γ=tans(α·π/4), γ=log2(α

s+1), 
γ=log2

s(α+1), γ=(2α–1)s, γ=2/π·arcsin(αs), γ=(2/π·arcsinα)s, γ=1-2/π·arccos(αs), 
γ=1-(2/π·arccosα)s, γ=4/π·arctan(αs), γ=(4/π·arctanα)s, γ=ctg(π/2–αs·π/4),  
γ=ctgs(π/2-α·π/4), γ=2-4/π·arcctg(αs), γ=(2-4/π·arcctgα)s, 
γ=β·α2+(1-β)·α, γ=β·α4+(1-β)·α,…, γ=β·α2k+(1-β)·α for β∈[0;1] and k∈N or 

ααγ s⋅−−= )1(1 . 

Functions above, used in γ calculations, are strictly monotonic for random 
variable α∈[0;1] as γ = F(α) is probability distribution function. There is one 
important probability distribution in mathematics: beta distribution where for 
example γ=3α2-2α3, γ=4α3-3α4 or γ=2α-α2. Also inverse functions F-1 are 
appropriate for γ calculations. Choice of function and value s depends on data 
specifications and individual requirements during data interpolation.  

Extrapolation demands that α is out of range [0;1], for example α∈(1;2] or α∈[-
1;0), with γ = F(α) as probability distribution function and then F is called extended 
distribution function in the case of extrapolation. Some of these functions γ are 
useless for data forecasting because they do not exist (γ=α½, γ=α¼) if α < 0 in (1). 
Then it is possible to change parameter α < 0 into corresponding α > 1 and formulas 
(1)-(2) turn to equivalent equations: 

c = α⋅xi+1 + (1-α)⋅xi,    i = 1,2,…n-1,  (4) 

),...,,()1()1()( 211 mii ppphyycy ⋅−+−+⋅= + γγγγ . (5) 



Data Forecasting and Extrapolation via Probability Distribution 

PNC forecasting for α < 0 or α > 1 uses function 
for the arguments from ]1;0[⊃P , γ = F(α), F

be strictly monotonic only for α∈[0;1]. Data simulation and modeling for 
α > 1 is done using the same function γ = F(α)  that is earlier defined for 

3. PNC Extrapolation and Data Trends
Unknown data are modeled (interpolated or extrapolated) by the choice of 

nodes, determining specific nodes combination and probabilistic distribution 
function to show trend of values: increasing, decreasing or stable. Less complicated 
models take h(p1,p2,…,pm) = 0 and then the formula of interpolation (2) looks as 
follows: 

1)1()( +−+⋅= ii yycy γγ . 

It is linear interpolation for basic probability distribution (
 
Example 1 
Nodes are (1;3), (3;1), (5;3) and (7;3), h = 0, extended distribution 
extrapolation is computed with (4)-(5) for α > 1:

Fig. 1. PNC for 9 interpolated points between nodes and 9 extrapolated points.

Anticipated points (stable trend): (7.2;3), (7.4;3), (7.6;3), (7.8;3), (8;3), (8.2;3), 
(8.4;3), (8.6;3), (8.8;3) for α = 1.1, 1.2, …, 1.9. 
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 > 1 uses function F as extended distribution function 
F:P→R, F(0)=0, F(1)=1 and F has to 

[0;1]. Data simulation and modeling for α < 0 or  
α)  that is earlier defined for α∈[0;1]. 

PNC Extrapolation and Data Trends 
Unknown data are modeled (interpolated or extrapolated) by the choice of 

nodes, determining specific nodes combination and probabilistic distribution 
function to show trend of values: increasing, decreasing or stable. Less complicated 

) = 0 and then the formula of interpolation (2) looks as 

It is linear interpolation for basic probability distribution (γ = α).  

= 0, extended distribution γ = α2, 
α > 1: 

 

PNC for 9 interpolated points between nodes and 9 extrapolated points. 

Anticipated points (stable trend): (7.2;3), (7.4;3), (7.6;3), (7.8;3), (8;3), (8.2;3), 
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Example 2 
Nodes (1;3), (3;1), (5;3) and (7;2), h = 0, extended distribution 
Forecasting is computed as (4)-(5) with α > 1: 

Fig. 2. PNC with 9 interpolated points between nodes and 9 extrapolated points.

Extrapolated points (decreasing trend): (7.2;1.79), (7.4;1.56), (7.6;1.31), (7.8;1.04), 
(8;0.75), (8.2;0.44), (8.4;0.11), (8.6;-0.24), (8.8;
 
Example 3 
Nodes (1;3), (3;1), (5;3) and (7;4), h = 0, extended distribution 

Fig. 3. PNC for 9 interpolated points between nodes and 9 extrapolated points.

Forecast (increasing trend): (7.2;4.331), (7.4;4.728), (7.6;5.197), (7.8;5.744), 
(8;6.375), (8.2;7.096), (8.4;7.913), (8.6;8.832), (8.8;9.859) for 

These three examples 1-3 (Fig.1-3) with nodes combination 
fourth node and extended probability distribution functions  
possibilities of modeling are connected with a choice of nodes combination 
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= 0, extended distribution γ=F(α)=α2. 

 

PNC with 9 interpolated points between nodes and 9 extrapolated points. 

decreasing trend): (7.2;1.79), (7.4;1.56), (7.6;1.31), (7.8;1.04), 
0.24), (8.8;-0.61) for α = 1.1, 1.2, …, 1.9. 

= 0, extended distribution γ=F(α)=α3: 

 

r 9 interpolated points between nodes and 9 extrapolated points. 

Forecast (increasing trend): (7.2;4.331), (7.4;4.728), (7.6;5.197), (7.8;5.744), 
(8;6.375), (8.2;7.096), (8.4;7.913), (8.6;8.832), (8.8;9.859) for α = 1.1, 1.2, …, 1.9. 

3) with nodes combination h = 0 differ at 
fourth node and extended probability distribution functions  γ=F(α). Much more 
possibilities of modeling are connected with a choice of nodes combination 
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h(p1,p2,…,pm). MHR method [20] uses the combination (3) with good features 
connected with orthogonal rows and columns at Hurwitz
[21-22]: 

i
i

i
i

i

i
ii x

x

y
x

x

y
pph

1

1
11),(

+

+
++ +=  

and then (2): )1()1()( 1+ ⋅−+−+⋅= ii yycy γγγγ
Here are two examples 4 and 5 of PNC method with MHR combination (3).
 
Example 4 
Nodes are (1;3), (3;1) and (5;3), extended distribution 
computed with (4)-(5) for α > 1: 

Fig. 4. PNC modeling with 9 interpolated points between nodes and 9 extrapolated points.

Extrapolation (decreasing trend): (5.2;2.539), (5.4;1.684), (5.6;0.338), (5.8;
(6;-4.25), (6.2;-7.724), (6.4;-12.155), (6.6;
for α = 1.1, 1.2, …, 1.9. 
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combination (3) with good features 
connected with orthogonal rows and columns at Hurwitz-Radon family of matrices 

),( 1+ii pph . 

Here are two examples 4 and 5 of PNC method with MHR combination (3). 

Nodes are (1;3), (3;1) and (5;3), extended distribution γ = F(α) = α2. Forecasting is 

 

PNC modeling with 9 interpolated points between nodes and 9 extrapolated points. 

Extrapolation (decreasing trend): (5.2;2.539), (5.4;1.684), (5.6;0.338), (5.8;-1.603), 
12.155), (6.6;-17.68), (6.8;-24.443)  
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Example 5 
Nodes (1;3), (3;1) and (5;3), extended distribution 
computed with (4)-(5) for α > 1: 

Fig. 5. PNC modeling with 9 interpolated points between nodes and 9 extrapolated points.

Value forecasting (decreasing trend): (5.2;2.693), (5.4;2.196), (5.6;1.487), 
(5.8;0.543), (6;-0.657), (6.2;-2.136), (6.4;-
for α =1.1, 1.2, …, 1.9. 

Now let us consider PNC method with other functions 
α < 0 for extrapolation (1)-(2) and nodes combination 

 
Example 6 
Nodes (2;2), (3;1), (4;2), (5;1), (6;2) and extended distribution 

Fig. 6. PNC modeling with 9 interpolated points between nodes and 9 extrapolated points.

Dariusz Jacek Jakóbczak 

Nodes (1;3), (3;1) and (5;3), extended distribution γ = F(α) = α1.5. This forecasting is 

 

PNC modeling with 9 interpolated points between nodes and 9 extrapolated points. 

Value forecasting (decreasing trend): (5.2;2.693), (5.4;2.196), (5.6;1.487), 
-3.915), (6.6;-6.016), (6.8;-8.461)  

Now let us consider PNC method with other functions F than power functions, 
(2) and nodes combination h=0. 

Nodes (2;2), (3;1), (4;2), (5;1), (6;2) and extended distribution F(α)=sin(α·π/2), h=0: 

 

points between nodes and 9 extrapolated points. 
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Extrapolation points (increasing trend): (6.1;2.156), (6.2;2.309), (6.3;2.454), 
(6.4;2.588), (6.5;2.707), (6.6;2.809), (6.7;2.891), (6.8;2.951), (6.9;2.988) 
for α = -0.1, -0.2, …, -0.9. 
 
Example 7 
Nodes (2;2), (3;1), (4;2), (5;1), (6;2) and extended distr
h = 0: 

Fig. 7. PNC modeling with nine interpolated points between successive nodes and nine 
extrapolated points right of the last node. 

Forecast points (increasing trend): (6.1;2.004), (6.2;2.03), (6.3;2.094), (6.4;2.203), 
(6.5;2.354), (6.6;2.53), (6.7;2.707), (6.8;2.86), (6.9;2.964) for 
0.9. 

These two examples 6 and 7 (Fig.6-7) with nodes combination 
same set of nodes differ only at extended probability distribution functions 
Fig.8 is the example of nodes combination h as (3) in MHR method.
 
Example 8 
Nodes (2;2), (3;1), (4;1), (5;1), (6;2) and extended distribution function 
γ=F(α)=2α -1: 
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Extrapolation points (increasing trend): (6.1;2.156), (6.2;2.309), (6.3;2.454), 
(6.4;2.588), (6.5;2.707), (6.6;2.809), (6.7;2.891), (6.8;2.951), (6.9;2.988)  

Nodes (2;2), (3;1), (4;2), (5;1), (6;2) and extended distribution γ=F(α)=sin3(α·π/2),  

 

PNC modeling with nine interpolated points between successive nodes and nine 

Forecast points (increasing trend): (6.1;2.004), (6.2;2.03), (6.3;2.094), (6.4;2.203), 
.5;2.354), (6.6;2.53), (6.7;2.707), (6.8;2.86), (6.9;2.964) for α = -0.1, -0.2, …, -

7) with nodes combination h=0 and the 
same set of nodes differ only at extended probability distribution functions γ = F(α). 

as (3) in MHR method. 

Nodes (2;2), (3;1), (4;1), (5;1), (6;2) and extended distribution function  
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Fig. 8. PNC modeling with nine interpolated points between successive nodes and nine 
extrapolated points right of the last node. 

Forecast points (increasing trend): (6.1;2.067), (6.2;2.129), (6.3;2.188), (6.4;2.242), 
(6.5;2.293), (6.6;2.34), (6.7;2.384), (6.8;2.426), (6.9;2.464) 
for α = -0.1, -0.2, …, -0.9. 

Examples that are calculated above have one function 
combination h for all ranges between nodes. But it is possible to create a model with 
functions γi = Fi(α) and combinations hi individually for every range of nodes 
(pi;pi+1). Then it enables very precise modeling of data between each successive pair 
of nodes. Each data point is interpolated or extrapolated by PNC via three factors: 
the set of nodes, probability distribution function 
These three factors are chosen individually for each data, therefore this information 
about modeled points seems to be enough for specific PNC data retrieval and 
forecasting. Function γ is selected via the analysis of known points before 
extrapolation, we may assume h = 0 at the beginning and after some time exchange 
h by more adequate. 

These eight examples illustrate the forecasting of some values in planning 
process, for example anticipation of some costs or expenses and foreseeing the 
prices or other significant data in the process of planning.

4. Conclusions 
The paper is dealing with information retrieval and data forecasting. The 

method of Probabilistic Nodes Combination (PNC) enables interpolation and 
extrapolation of two-dimensional curves using nodes combina
coefficients γ: polynomial, sinusoidal, cosinusoidal, tangent, cotangent, logarithmic, 
exponential, arc sin, arc cos, arc tan, arc cot or power function, also inverse 
functions. Function for γ calculations is chosen individually at each
treated as probability distribution function: γ depends on initial requirements and 
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Forecast points (increasing trend): (6.1;2.067), (6.2;2.129), (6.3;2.188), (6.4;2.242), 
(6.5;2.293), (6.6;2.34), (6.7;2.384), (6.8;2.426), (6.9;2.464)  

Examples that are calculated above have one function γ = F(α) and one 
for all ranges between nodes. But it is possible to create a model with 

individually for every range of nodes 
). Then it enables very precise modeling of data between each successive pair 

of nodes. Each data point is interpolated or extrapolated by PNC via three factors: 
the set of nodes, probability distribution function γ = F(α) and nodes combination h. 

ree factors are chosen individually for each data, therefore this information 
about modeled points seems to be enough for specific PNC data retrieval and 

 is selected via the analysis of known points before 
= 0 at the beginning and after some time exchange 

These eight examples illustrate the forecasting of some values in planning 
process, for example anticipation of some costs or expenses and foreseeing the 

data in the process of planning. 

The paper is dealing with information retrieval and data forecasting. The 
method of Probabilistic Nodes Combination (PNC) enables interpolation and 

dimensional curves using nodes combinations and different 
: polynomial, sinusoidal, cosinusoidal, tangent, cotangent, logarithmic, 

exponential, arc sin, arc cos, arc tan, arc cot or power function, also inverse 
 calculations is chosen individually at each case and it is 

γ depends on initial requirements and 
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data specifications. PNC method leads to point extrapolation and interpolation via 
discrete set of fixed knots. Main features of PNC method are: PNC method develops 
a linear interpolation and extrapolation into other functions as probability 
distribution functions; PNC is a generalization of MHR method via different nodes 
combinations; nodes combination and coefficient γ are crucial in the process of data 
probabilistic retrieval and forecasting. Future works are going to precise the choice 
and features of nodes combinations and coefficient γ, also to implementation of 
PNC in handwriting and signature recognition. 
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Abstract 
Proposed method, called Probabilistic Nodes Combination (PNC), is the method of 
2D data interpolation and extrapolation. Nodes are treated as characteristic points of 
information retrieval and data forecasting. PNC modeling via nodes combination 
and parameter γ as probability distribution function enables 2D point extrapolation 
and interpolation. Two-dimensional information is modeled via nodes combination 
and some functions as continuous probability distribution functions: polynomial, 
sine, cosine, tangent, cotangent, logarithm, exponent, arc sin, arc cos, arc tan, arc cot 
or power function. Extrapolated values are used as the support in data forecasting. 
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Streszczenie 
Autorska metoda Probabilistycznej Kombinacji Węzłów- Probabilistic Nodes 
Combination (PNC) jest wykorzystywana do interpolacji i ekstrapolacji 
dwuwymiarowych danych. Węzły traktowane są jako punkty charakterystyczne 
informacji, która ma być odtwarzana lub przewidywana. Dwuwymiarowe dane są 
interpolowane lub ekstrapolowane z wykorzystaniem różnych funkcji rozkładu 
prawdopodobieństwa: potęgowych, wielomianowych, wykładniczych, 
logarytmicznych, trygonometrycznych, cyklometrycznych. W pracy pokazano 
propozycję metody ekstrapolowania danych jako pomoc w przewidywaniu trendu 
dla nieznanych wartości. 

 


