PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comprehensive Review on Graphene Oxide Based Nanocomposites for Wastewater Treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
With the paramount development of industry and agriculture sector, levels of different pollutants like, heavy metal ions, pharmaceuticals, organic dyes, biological waste and other pollutants are becoming serious. The ecosystem and human health suffered greatly from the adverse effects of these pollutants. The disposal of these pollutants has become an urgent issue for the human society. Graphene oxide base nanocomposites have generated an excellent extent of focus as desirable alternatives for the adsorptive elimination of contaminants from aqueous systems owing to their enhanced surface area and multiple functional groups for adsorption. Graphene oxide (GO) as a graphene derivative exhibited superior features as obtainable in a graphene sheet. Moreover, the addition of oxygen functional group at the edges and basal plane of graphene further enhanced the efficiency of the graphene by providing sites for the attachment of different metals on the surface. On the underlying adsorption processes, graphene-based nanocomposites for specific contaminants are designed and currently employed for wastewater treatment. This review presents the ongoing development of GO base nanocomposites and their useful applications, understanding how well graphene-based nanocomposites adsorb pollutants and how that relates to the ways in which pollutants interact with adsorbents is crucial. This study highlights newly developed trends in the creation of graphene oxide based nanocomposites to eliminate different heavy metal ions, dyes, pharmaceuticals, and oils spills from effluent water. The focus is on various graphene oxides nanocomposites application for the removal of different pollutants and regeneration of graphene oxide base nanocomposites after several adsorption cycles. Other challenges and potential directions for designing efficient GO based nanocomposites as adsorbents are also presented along with the problems of current studies.
Rocznik
Strony
64--79
Opis fizyczny
Bibliogr. 130 poz., rys., tab., wz.
Twórcy
  • Mechanical Engineering Department, College of Engineering, Gulf University Sanad, Bahrain
  • College of Engineering University of Warith Al-Anbiyaa Karbala, Iraq
  • College of Technical Engineering Al-Farahidi University Baghdad, Iraq
  • Chemistry Branch, Applied Sciences Department, University of Technology Baghdad, Iraq
  • Chemistry Branch, Applied Sciences Department, University of Technology Baghdad, Iraq
  • Department of Energy Engineering, College of Engineering, University of Baghdad, Iraq
  • Chemistry Branch, Mechanical Engineering Department, College of Engineering, Gulf University Sanad, Bahrain
  • Material College, Donghua University Shanghai, China
  • Chemistry Branch, Applied Sciences Department, University of Technology Baghdad, Iraq
  • Chemistry Branch, Applied Sciences Department, University of Technology Baghdad, Iraq
  • Chemistry Branch, Applied Sciences Department, University of Technology Baghdad, Iraq
Bibliografia
  • 1. Marjani, A., Nakhjiri, A.T., Adimi, M., Jirandehi, H.F. & Shirazian, S. (2020). Effect of graphene oxide on modifying polyethersulfone membrane performance and its application in wastewater treatment. Sci. Reports, 10(1), 1–11. DOI: 10.1038/s41598-020-58472-y.
  • 2. Abdullah, T.A., Juzsakova, T., Rasheed, R.T., Salman, A.D., Adelikhah, M., Le, P. & Crețescu, I. (2021). V2O5 Nanoparticles for Dyes Removal from Water. Chem. J. Moldova, 16(2), 102–111. DOI: 10.19261/cjm.2021.911.
  • 3. Velusamy, S., Roy, A., Sundaram, S. & Mallick, T.K. (2021). A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. The Chem. Record, 21(7), 1570–1610. DOI: 10.1002/tcr.202000153.
  • 4. Lim, J.Y., Mubarak, N., Abdullah, E., Nizamuddin, S. & Khalid, M. (2018). Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review. J. Ind. Engin. Chem. 66, 29–44. DOI: 10.1016/j.jiec.2018.05.028.
  • 5.Salman, A.D., Juzsakova, T., Jalhoom, M.G., Le Phuoc, C., Mohsen, S., Adnan Abdullah, T., Zsirka, B., Cretescu, I., Domokos, E. & Stan, C.D. (2019). Novel Hybrid Nanoparticles: Synthesis, Functionalization, Characterization, and Their Application in the Uptake of Scandium (III)Ions from Aqueous Media. Materials, 13(24), 5727. DOI: 10.3390/ma13245727.
  • 6. Al Kausor, M. & Chakrabortty, D. (2021). Graphene oxide based semiconductor photocatalysts for degradation of organic dye in waste water: A review on fabrication, performance enhancement and challenges. Inorganic Chem. Commun. 129, 108630. DOI: 10.1016/j.inoche.2021.108630.
  • 7. Grape E.S., Chacón-García A.J., Rojas S., Pérez Y., Jaworski A., Nero M., Åhlén M., Martínez-Ahumada E., Feindt A.E. & Pepillo, M. (2023). Removal of pharmaceutical pollutants from effluent by a plant-based metal–organic framework. Nature Water 1, 1–10. DOI: 10.1038/s44221-023-00070-z.
  • 8. Ikram, M., Raza, A., Imran, M., Ul-Hamid, A., Shahbaz, A. & Ali, S. (2020). Hydrothermal Synthesis of Silver Decorated Reduced Graphene Oxide (rGO) Nanoflakes with Effective Photocatalytic Activity for Wastewater Treatment. Nanoscale Res Lett, 15, 95. DOI: 10.1186/s11671-020-03323-y.
  • 9. Salman, A.D., Juzsakova, T., Ákos, R., Ibrahim, R.I., Al-Mayyahi, M.A. Mohsen, S., Abdullah, T.A. & Domokos, E. (2021). Synthesis and surface modification of magnetic Fe3O4@ SiO2 core-shell nanoparticles and its application in uptake of scandium (III) ions from aqueous media. Environ. Sci. Pollut. Res. 28, 28428–28443. DOI: 10.1007/s11356-020-12170-4.
  • 10. Adel, M., Ahmed, M. A., Elabiad, M.A. & Mohamed, A.A. (2022). Removal of heavy metals and dyes from waste-water using graphene oxide-based nanomaterials: A critical review. Environ. Nanotech. Monit. & Manag. 18, 100719. DOI: 10.1016/j.enmm.2022.100719.
  • 11. Hussain, I., Hussain, A., Ahmad, A., Rahman, H., Alajmi, M.F., Ahmed, F. & Amir, S. (2018). New generation graphene oxide for removal of polycyclic aromatic hydrocarbons. Graphene-Based Nanotechnol. for Energy Environ. Applic. 241–266. DOI: 10.1016/B978-0-12-815811-1.00014-4.
  • 12. Diraki, A., Mackey, H.R., McKay, G. & Abdala, A. (2019). Removal of emulsified and dissolved diesel oil from high salinity wastewater by adsorption onto graphene oxide. J. Environ. Chem. Engin. 7(3), 103106. DOI: 10.1016/j.jece.2019.103106.
  • 13. Cerro-Lopez, M. & Méndez-Rojas, M.A. (2019). Application of nanomaterials for treatment of wastewater containing pharmaceuticals. Ecopharmacovigilance: Multidisc. Approaches to Environ. Safety of Medicines, 201–219, 2019. DOI: 10.1007/698_2017_143.
  • 14. Zhang, J., Lu, X., Shi, C., Yan, B., Gong, L., Chen, J., Xiang, L., Xu, H., Liu, Q. & Zeng, H. (2019). Unraveling the molecular interaction mechanism between graphene oxide and aromatic organic compounds with implications on wastewater treatment. Chem. Engin. J. 358, 842–849. DOI: 10.1016/j. cej.2018.10.064.
  • 15. Rabchinskii, M.K., Ryzhkov, S.A., Kirilenko, D.A., Ulin, N.V., Baidakova, M.V., Shnitov, V.V., Pavlov, S.I., Chumakov, R.G., Stolyarova, D.Y., Besedina, N.A., Shvidchenko, A.V., Potorochin, D.V., Roth, F., Smirnov, D.A., Gudkov, M.V., Brzhezinskaya, M., Lebedev, O.I., Melnikov, V.P. & Brunkov, P. N. (2020). From graphene oxide towards aminated graphene: Facile synthesis, its structure and electronic properties. Scientific Reports, 10(1), 1-12. DOI: 10.1038/s41598-020-63935-3.
  • 16. Yu, Z., Zeng, H., Min, X. & Zhu, X. (2020). High-performance composite photocatalytic membrane based on titanium dioxide nanowire/graphene oxide for water treatment. J. Appl. Pol. Sci. 137(12), 48488. DOI: 10.1002/app.48488.
  • 17. Wu, W., Shi, Y., Liu, G., Fan, X., & Yu, Y. (2020). Recent development of graphene oxide based forward osmosis membrane for water treatment: A critical review. Desalination, 491, 114452. DOI: 10.1016/j.desal.2020.114452.
  • 18. Rasheed, M., Shihab, S. & Sabah, O.W. (2021). An investigation of the Structural, Electrical and Optical Properties of Graphene-Oxide Thin Films Using Different Solvents. J. Phys. 1795(1), 012052. DOI: 10.1088/1742-6596/1795/1/012052.
  • 19. Wang, Y., Li, S., Yang, H. & Luo, J. (2020). Progress in the functional modification of graphene/graphene oxide: a review. RSC Advances, 10(26), 15328–15345. DOI: 10.1039/d0ra01068e.
  • 20. Ajala, O., Tijani, J., Bankole, M. & Abdulkareem, A. (2022). A critical review on graphene oxide nanostructured material: Properties, Synthesis, characterization and application in water and wastewater treatment. Environ. Nanotech. Monit. & Manag. 18, 100673. DOI: 10.1016/j.enmm.2022.100673.
  • 21. Brisebois, P. & Siaj, M. (2020). Harvesting graphene oxide – years 1859 to 2019: a review of its structure, synthesis, properties and exfoliation. J. Mater. Chem. C, 8(5), 1517–1547. DOI: 10.1039/c9tc03251g.
  • 22. Khan, F., Khan, M.S., Kamal, S., Arshad, M., Ahmad, S. & Nami, S.A. (2020). Recent advances in graphene oxide and reduced graphene oxide based nanocomposites for the photo-degradation of dyes. J. Mater. Chem. C, 8(45), 15940–15955. DOI: 10.1039/d0tc03684f.
  • 23. Smith, A.T., LaChance, A.M., Zeng, S., Liu, B. & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Mater. Sci. 1(1), 31–47. DOI: 10.1016/j.nanoms.2019.02.004.
  • 24. Liu, T., Liu, X., Graham, N., Yu, W. & Sun, K. (2020). Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance. J. Membrane Sci. 593, 117431. DOI: 10.1016/j.memsci.2019.117431.
  • 25. Fan, X., Cai, C., Gao, J., Han, X. & Li, J. (2020). Hydrothermal reduced graphene oxide membranes for dyes removing. Separ. Purific. Technol. 241, 116730. DOI: 10.1016/j.seppur.2020.116730.
  • 26. Ahmad, S.Z.N., Salleh, W.N.W., Ismail, A.F., Yusof, N., Yusop, M.Z.M. & Aziz, F. (2020). Adsorptive removal of heavy metal ions using graphene-based nanomaterials: Toxicity, roles of functional groups and mechanisms. Chemosphere, 248, 126008. DOI: 10.1016/j.chemosphere.2020.126008.
  • 27. Feng, J., Ye, Y., Xiao, M., Wu, G. & Ke, Y. (2020). Synthetic routes of the reduced graphene oxide. Chemical Papers 74, 3767–3783. DOI: 10.1007/s11696-020-01196-0.
  • 28. Abu-Nada, A., McKay, G. & Abdala, A. (2020). Recent Advances in Applications of Hybrid Graphene Materials for Metals Removal from Wastewater. Nanomaterials, 10(3), 595. DOI: 10.3390/nano10030595.
  • 29. Thakur, K. & Kandasubramanian, B. (2019). Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A review. J. Chem. & Engin. Data, 64(3), 833–867. DOI: 10.1021/acs.jced.8b01057.
  • 30. Singh, S., Anil, A.G., Khasnabis, S., Kumar, V., Nath, B., Adiga, V., ……Singh, J. (2022). Sustainable removal of Cr(VI) using graphene oxide-zinc oxide nanohybrid: Adsorption kinetics, isotherms and thermodynamics. Environ. Res. 203, 111891. DOI: 10.1016/j.envres.2021.111891.
  • 31. Kaur, N., Kaur, M. & Singh, D. (2019). Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies. Environ. Pol. 253, 111–119. DOI: 10.1016/j.envpol.2019.05.145.
  • 32. Choi, J., Lingamdinne, L.P., Yang, J., Chang, Y. & Koduru, J.R. (2020). Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. J. Molec. Liquids, 320, 114410. DOI: 10.1016/j.molliq.2020.114410.
  • 33. Nguyen, H.T.V., Ngo, T.H.A., Dinh, K., Nguyen, M.N., Dang, N.T.T., Nguyen, T.T., ….. Vu, T.A. (2019). Preparation and characterization of a hydrophilic polysulfone membrane using graphene oxide. J. Chem. 2019, 1–10. DOI: 10.1155/2019/3164373.
  • 34. Liu, J., Lu, Z., Chen, Z., Rimoldi, M., Howarth, A.J., Chen, H., Hupp, J.T. (2021). Ammonia Capture within Zirconium Metal–Organic Frameworks: Reversible and Irreversible Uptake. ACS Appl. Mater. & Interf. 13(17), 20081–20093. DOI: 10.1021/acsami.1c02370.
  • 35. Sali, S., Mackey, H.R. & Abdala, A. (2019). Effect of Graphene Oxide Synthesis Method on properties and performance of Polysulfone-Graphene oxide mixed matrix membranes. Nanomater. 9(5), 769. DOI: 10.3390/nano9050769.
  • 36. Adetayo, A. & Runsewe, D. (2019). Synthesis and Fabrication of graphene and graphene Oxide: a review. Open J. Comp. Mater. 09(02), 207–229. DOI: 10.4236/ojcm.2019.92012.
  • 37. Al-Gaashani, R., Najjar, A., Zakaria, Y., Mansour, S. & Atieh, M.A. (2019). XPS and structural studies of high quality graphene oxide and reduced graphene oxide prepared by different chemical oxidation methods. Ceramics Internat. 45(11), 14439–14448. DOI: 10.1016/j.ceramint.2019.04.165.
  • 38. Alkhouzaam, A., Qiblawey, H., Khraisheh, M., Atieh, M.A. & Al-Ghouti, M.A. (2020). Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceramics Internat. 46(15), 23997–24007. DOI: 10.1016/j.ceramint.2020.06.177.
  • 39. Feicht, P., Biskupek, J., Gorelik, T.E., Renner, J., Halbig, C.E., Maranska, M., Puchtler, F., Kaiser, U., Eigler, S. (2019). Brodie’s or Hummers’ method: oxidation conditions determine the structure of graphene oxide. Chem. – a Europ. J. 25(38), 8955–8959. DOI: 10.1002/chem.201901499.
  • 40. Rasheed, R.T., Mansoor H.S., Al-Shaikhly R.R., Abdullah T.A., Salman A.D. & Juzsakova T. (2020), “Synthesis and catalytic activity studies of α-MnO2 nanorodes, rutile TiO2 and its composite prepared by hydrothermal method. In AIP Conference Proceedings 2213(1), 020122. DOI: 10.1063/5.0000228.
  • 41. Lingamdinne, L.P., Koduru, J.R. & Karri, R.R. (2019). A comprehensive review of applications of magnetic graphene oxide based nanocomposites for sustainable water purification. J. Environ. Manag. 231, 622–634. DOI: 10.1016/j. jenvman.2018.10.063.
  • 42. Jose, P.P.A., Kala, M.S., Kalarikkal, N. & Thomas, S. (2018). Silver-attached reduced graphene oxide nanocomposite as an eco-friendly photocatalyst for organic dye degradation. Res. on Chem. Intermed. 44(9), 5597–5621. DOI: 10.1007/s11164-018-3443-8.
  • 43.Yuan, R., Wen, H., Zeng, L., Li, X., Liu, X. & Zhang, C. (2021). Supercritical CO2 assisted solvothermal preparation of COO/Graphene nanocomposites for high performance Lithium-Ion batteries. Nanomaterials, 11(3), 694. DOI: 10.3390/nano11030694.
  • 44. Chin, S.J., Doherty, M., Vempati, S., Dawson, P., Byrne, C., Meenan, B.J., . . . McNally, T. (2019). Solvothermal synthesis of graphene oxide and its composites with poly(ε-caprolactone). Nanoscale, 11(40), 18672–18682. DOI: 10.1039/c9nr04202d.
  • 45. Pu, S., Xue, S., Zeng, Y., Hou, Y., Zhu, R., & Chu, W. (2018). In situ co-precipitation preparation of a superparamagnetic graphene oxide/Fe3O4 nanocomposite as an adsorbent for wastewater purification: synthesis, characterization, kinetics, and isotherm studies. Environ. Sci. Pollut. Res. 25(18), 17310–17320. DOI: 10.1007/s11356-018-1872-y.
  • 46. Hao, X., Zhu, M., Dong, L.L., Zhang, W., Sun, X., Wang, Y., Yong Qing Fu, Zhang, Y. (2022). In-situ synthesis of reduced graphene oxide/aluminium oxide nanopowders for reinforcing Ti-6Al-4V composites. J. Alloys Compounds, 905, 164198. DOI: 10.1016/j.jallcom.2022.164198.
  • 47. Joya-Cárdenas, D.R., Rodríguez-Caicedo, J.P., Gallegos-Muñoz, A., Zanor, G.A., Caycedo-García, M.S., Damián, C. & Saldaña-Robles, A. (2022). Graphene-Based Adsorbents for arsenic, fluoride, and chromium adsorption: Synthesis Methods Review. Nanomaterials, 12(22), 3942. DOI: 10.3390/nano12223942.
  • 48. Rasuli, H. & Rasuli, R. (2023). Nanoparticle-decorated graphene/graphene oxide: synthesis, properties and applications. J. Mat. Sci. 58(7), 2971–2992. DOI: 10.1007/s10853-023-08183-2.
  • 49. Suneetha, R.B., Selvi, P.K. & Vedhi, C. (2019). Synthesis, structural and electrochemical characterization of Zn doped iron oxide/grapheneoxide/chitosan nanocomposite for super-capacitor application. Vacuum, 164, 396–404. DOI: 10.1016/j.vacuum.2019.03.051.
  • 50. Chai, W.S., Cheun, J.Y., Kumar, P., Mubashir, M., Majeed, Z., Banat, F., Ho, S.H., Show, P.L. (2021). A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Cleaner Prod. 296, 126589. DOI: 10.1016/j.jclepro.2021.126589.
  • 51. Rashid, R., Shafiq, I., Akhter, P., Iqbal, M. & Hussain, M. (2021). A state-of-the-art review on wastewater treatment techniques: the effectiveness of adsorption method. Environ. Sci. Pollut. Res. 28(8), 9050–9066. DOI: 10.1007/s11356-021-12395-x.
  • 52. Lentz, L., Mayer, D.A., Dogenski, M. & Ferreira, S.R. (2022). Hybrid aerogels of sodium alginate/graphene oxide as efficient adsorbents for wastewater treatment. Mater. Chem. Phys. 283, 125981. DOI: 10.1016/j.matchemphys.2022.125981.
  • 53. Bi, C., Zhang, C., Ma, F., Zhang, X., Yang, M., Nian, J., . . . Lv, Q. (2021). Growth of a mesoporous Zr-MOF on functionalized graphene oxide as an efficient adsorbent for recovering uranium (VI) from wastewater. Micro. Meso. Mat. 323, 111223. DOI: 10.1016/j.micromeso.2021.111223.
  • 54. Verma, M., Tyagi, I., Kumar, V., Goel, S., Vaya, D. & Kim, H. (2021). Fabrication of GO–MnO2 nanocomposite using hydrothermal process for cationic and anionic dyes adsorption: Kinetics, isotherm, and reusability. J. Environ. Chem. Engin. 9(5), 106045. DOI: 10.1016/j.jece.2021.106045.
  • 55. Verma, M., Kumar, A., Singh, K.P., Kumar, R., Kumar, V., Srivastava, C.M., Rawat, V., Rao, G., Kumari, S., Sharma, P., Kim, H. (2020). Graphene oxide-manganese ferrite (GO-MnFe2O4) nanocomposite: One-pot hydrothermal synthesis and its use for adsorptive removal of Pb2+ ions from aqueous medium. J. Molec. Liquids, 315, 113769. DOI: 10.1016/j. molliq.2020.113769.
  • 56. Chang, Z., Chen, Y., Tang, S., Yang, J., Chen, Y., Chen, S., . . . Yang, Z. (2020). Construction of chitosan/polyacrylate/graphene oxide composite physical hydrogel by semi-dissolution/acidification/sol-gel transition method and its simultaneous cationic and anionic dye adsorption properties. Carbohydr. Polym. 229, 115431. DOI: 10.1016/j.carbpol.2019.115431.
  • 57. Liu, L., Kong, G., Zhu, Y. & Che, C. (2021). Super-hydrophobic graphene aerogel beads for adsorption of oil and organic solvents via a convenient in situ sol-gel method. Colloid and Interf. Sci. Commun. 45, 100518. DOI: 10.1016/j.colcom.2021.100518.
  • 58. Cheng, Y., Yang, S. & E, T. (2021). Magnetic graphene oxide prepared via ammonia coprecipitation method: The effects of preserved functional groups on adsorption property. Inorganic Chem. Commun. 128, 108603. DOI: 10.1016/j.inoche.2021.108603.
  • 59. Dat, N.M., Long, P.N.B., Nhi, D.C.U., Minh, N.N., Duy, L.M., Quan, L.N., . . . Hieu, N.H. (2020). Synthesis of silver/reduced graphene oxide for antibacterial activity and catalytic reduction of organic dyes. Synthetic Metals, 260, 116260. DOI: 10.1016/j.synthmet.2019.116260.
  • 60. Naeem, H., Tofil, H.M., Soliman, M.Y., Hai, A., Zaidi, S.H.H., Kizilbash, N., . . . Siddiq, M. (2023). Reduced Graphene Oxide-Zinc Sulfide Nanocomposite Decorated with Silver Nanoparticles for Wastewater Treatment by Adsorption, Photocatalysis and Antimicrobial Action. Molecules, 28(3), 926. DOI: 10.3390/molecules28030926.
  • 61. Ahmed, M.A., Ahmed, M. & Mohamed, A.A. (2023). Synthesis, characterization and application of chitosan/graphene oxide/copper ferrite nanocomposite for the adsorptive removal of anionic and cationic dyes from wastewater. RSC Advances, 13(8), 5337–5352. DOI: 10.1039/d2ra07883j.
  • 62. Bukhari, A., Ijaz, I., Zain, H., Mehmood, U., Iqbal, M., Gilani, E. & Nazir, A. (2023). Introduction of CdO nanoparticles into graphene and graphene oxide nanosheets for increasing adsorption capacity of Cr from wastewater collected from petroleum refinery. Arabian J. Chem. 16(2), 104445. 10.1016/j. arabjc.2022.104445.
  • 63. Wang, J., Zhang, J., Han, L., Wang, J., Zhu, L. & Zeng, H. (2021). Graphene-based materials for adsorptive removal of pollutants from water and underlying interaction mechanism. Adv. Colloid Interf. Sci. 289, 102360. DOI: 10.1016/j.cis.2021.102360.
  • 64. Baig, N., Abdulazeez, I. & Aljundi, I.H. (2023). Low-pressure-driven special wettable graphene oxide-based membrane for efficient separation of water-in-oil emulsions. Npj Clean Water, 6(1). DOI: 10.1038/s41545-023-00252-y.
  • 65. Cao, K., Tian, Z., Zhang, X., Wang, Y., & Zhu, Q. (2022). Facile preparation of graphite nanosheets with excellent adsorption property. Research Square (Research Square). DOI: 10.21203/rs.3.rs-1936026/v1.
  • 66. Yasir, A.T., Benamor, A., Hawari, A.H., & Mahmoudi, E. (2023). Graphene oxide/chitosan doped polysulfone membrane for the treatment of industrial wastewater. Emergent Mat., 6(3), 899–910. DOI: 10.1007/s42247-023-00504-0.
  • 67. Das, L., Das, P., Bhowal, A. & Bhattachariee, C. (2020). Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environ.Technol. Innovation, 18, 100664. DOI: 10.1016/j.eti.2020.100664.
  • 68. Kadhim, R.J., Al-Ani, F.H., Al-Shaeli, M., Alsalhy, Q.F., & Figoli, A. (2020). Removal of dyes using graphene oxide (GO) mixed matrix membranes. Membranes, 10(12), 366. DOI: 10.3390/membranes10120366.
  • 69. Kurniawan, T.A., Zhu, M., Fu, D., Yeap, S.K., Othman, M.H.D., Avtar, R., & Ouyang, T. (2020). Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater. J. Environ. Manag. 270, 110871. DOI: 10.1016/j.jenvman.2020.110871.
  • 70. Mao, B., Boopathi, S., Thiruppathi, A.R., Wood, P.C. & Chen, A. (2020). Efficient dye removal and separation based on graphene oxide nanomaterials. New J. Chem. 44(11), 4519–4528. DOI: 10.1039/c9nj05895h.
  • 71. Zhu, M., Kurniawan, T.A., Song, F., Ouyang, T., Othman, M.H.D., Rezakazemi, M. & Shirazian, S. (2019). Applicability of BaTiO3/graphene oxide (GO) composite for enhanced photodegradation of methylene blue (MB) in synthetic wastewater under UV–vis irradiation. Environ. Pollut. 255, 113182. DOI: 10.1016/j.envpol.2019.113182.
  • 72. Abdi, G., Alizadeh, A., Amirian, J., Rezaei, S. & Sharma, G. (2019). Polyamine-modified magnetic graphene oxide surface: Feasible adsorbent for removal of dyes. J. Molec. Liquids, 289, 111118. DOI: 10.1016/j.molliq.2019.111118.
  • 73. Ain, Q., Farooq, M.U., & Jalees, M.I. (2020). Application of magnetic graphene oxide for water purification: heavy metals removal and disinfection. J. Water Proc. Engin. 33, 101044. DOI: 10.1016/j.jwpe.2019.101044.
  • 74. Le, T.T.N., Le, V.T., Dao, M.U., Nguyen, Q.V., Thu, V.T., Nguyen, M.Q., . . . Le, H.S. (2019). Preparation of magnetic graphene oxide/chitosan composite beads for effective removal of heavy metals and dyes from aqueous solutions. Chem. Engin. Commun. 206(10), 1337–1352. DOI: 10.1080/00986445.2018.1558215.
  • 75. Modi, A. & Bellare, J. (2020). Zeolitic imidazolate framework-67/carboxylated graphene oxide nanosheets incorporated polyethersulfone hollow fiber membranes for removal of toxic heavy metals from contaminated water. Separat. Purific. Technol. 249, 117160. DOI: 10.1016/j.seppur.2020.117160.
  • 76. Wu, Z., Deng, W., Zhou, W. & Luo, J. (2019). Novel magnetic polysaccharide/graphene oxide @Fe3O4 gel beads for adsorbing heavy metal ions. Carbohydr. Polym., 216, 119–128. DOI: 10.1016/j.carbpol.2019.04.020.
  • 77. Luo, Y., Huang, G., Li, Y., Yao, Y., Huang, J., Zhang, P., . . . Zhang, Z. (2023). Removal of pharmaceutical and personal care products (PPCPs) by MOF-derived carbons: A review. Sci. of the Total Environ. 857, 159279. DOI: 10.1016/j.scitotenv.2022.159279.
  • 78. Priya, A., Gnanasekaran, L., Rajendran, S., Qin, J., & Vasseghian, Y. (2022). Occurrences and removal of pharmaceutical and personal care products from aquatic systems using advanced treatment- A review. Environ. Res. 204, 112298. DOI: 10.1016/j.envres.2021.112298.
  • 79. Liu, T., Aniagor, C.O., Ejimofor, M., Menkiti, M.C., Tang, K.H.D., Chin, B.L.F., . . . Yap, P. (2023b). Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J. Molec. Liquids, 374, 121144. DOI: 10.1016/j.molliq.2022.121144.
  • 80. Zhu, X., He, M., Sun, Y., Xu, Z., Wan, Z., Hou, D., . . . Tsang, D.C. (2022). Insights into the adsorption of pharmaceuticals and personal care products (PPCPs) on biochar and activated carbon with the aid of machine learning. J. Hazard. Mat. 423, 127060. DOI: 10.1016/j.jhazmat.2021.127060.
  • 81. Zou, Y., Wang, W., Wang, H., Pan, C., Xu, J., Pozdnyakov, I. P., . . . Li, J. (2023). Interaction between graphene oxide and acetaminophen in water under simulated sunlight: Implications for environmental photochemistry of PPCPs. Water Res., 228, 119364. DOI: 10.1016/j.watres.2022.119364.
  • 82. Chaudhary, P., Ahamad, L., Chaudhary, A., Kumar, G., Chen, W. & Chen, S. (2023). Nanoparticle-mediated bioremediation as a powerful weapon in the removal of environmental pollutants. J. Environ. Chem. Engin. 11(2), 109591. DOI: 10.1016/j.jece.2023.109591.
  • 83. Jiang, L., Li, Y., Chen, Y., Yao, B., Chen, X., Yu, Y., . . . Zhou, Y. (2023). Pharmaceuticals and personal care products (PPCPs) in the aquatic environment: Biotoxicity, determination and electrochemical treatment. J. Cleaner Prod. 388, 135923. DOI: 10.1016/j.jclepro.2023.135923.
  • 84. Ghosh, T. (2023). Graphene Oxide–Agar–Agar Hydrogel for Efficient Removal of Methyl Orange from Water. In Springer Proc. in Mat. (9–19). DOI: 10.1007/978-981-99-1616-0_2.
  • 85. Du, F., Wenjing, A., Liu, F., Wu, B., Liu, Y., Zheng, W., . . . Wang, X. (2023). Hydrophilic chitosan/graphene oxide composite sponge for rapid hemostasis and non-rebleeding removal. Carbohydr. Polym. 316, 121058. DOI: 10.1016/j.carbpol.2023.121058.
  • 86. Sadeghi, M.H., Tofighy, M.A. & Mohammadi, T. (2020). One-dimensional graphene for efficient aqueous heavy metal adsorption: Rapid removal of arsenic and mercury ions by graphene oxide nanoribbons (GONRs). Chemosphere, 253, 126647. DOI: 10.1016/j.chemosphere.2020.126647.
  • 87. Liu, D., Ding, C., Chi, F., Pan, N., Wen, J., Xiong, J. & Hu, S. (2019). Polymer brushes on graphene oxide for efficient adsorption of heavy metal ions from water. J. Appl. Polym. Sci. 136(43). DOI: 10.1002/app.48156.
  • 88. Arshad, F., Munirasu, S., Zain, J.H., Banat, F. & Haija, M.A. (2019). Polyethylenimine modified graphene oxide hydro-gel composite as an efficient adsorbent for heavy metal ions. Sep. Purif. Technol. 209, 870–880. DOI: 10.1016/j.seppur.2018.06.035.
  • 89. Jiang, H., Yang, Y., Lin, Z., Zhao, B., Wang, J., Xie, J. & Zhang, A. (2020). Preparation of a novel bio-adsorbent of sodium alginate grafted polyacrylamide/graphene oxide hydrogel for the adsorption of heavy metal ion. Sci. of the Total Environ. 744, 140653. DOI: 10.1016/j.scitotenv.2020.140653.
  • 90. Rodríguez, C., Tapia, C., Leiva-Aravena, E. & Leiva, E. (2020). Graphene Oxide–ZnO Nanocomposites for Removal of Aluminum and Copper Ions from Acid Mine Drainage Wastewater. Internat. J. Environ. Res. Public Health, 17(18), 6911. DOI: 10.3390/ijerph17186911.
  • 91. Dan, S., Bagheri, H., Shahidizadeh, A. & Hashemipour, H. (2023). Performance of graphene Oxide/SiO2 Nanocomposite-based: Antibacterial Activity, dye and heavy metal removal. Arabian J. Chem. 16(2), 104450. DOI: 10.1016/j.arabjc.2022.104450.
  • 92. Saeedi-Jurkuyeh, A., Jafari, A.J., Kalantary, R.R. & Esrafili, A. (2020). A novel synthetic thin-film nanocomposite forward osmosis membrane modified by graphene oxide and polyethylene glycol for heavy metals removal from aqueous solutions. Reactive and Func. Polym. 146, 104397. DOI: 10.1016/j.reactfunctpolym.2019.104397.
  • 93. Samuel, M.S., Bhattacharya, J., Raj, S., Needhidasan, S., Singh, H. & Singh, N.D.P. (2019). Efficient removal of Chromium(VI) from aqueous solution using chitosan grafted graphene oxide (CS-GO) nanocomposite. Internat. J. Biol. Macromol. 121, 285–292. DOI: 10.1016/j.ijbiomac.2018.09.170.
  • 94. El-Shafai, N.M., Abdelfatah, M., El-Khouly, M.E., El-Mehasseb, I.M., El-Shaer, A., Ramadan, M., . . . El-Kemary, M. (2020). Magnetite nano-spherical quantum dots decorated graphene oxide nano sheet (GO@Fe3O4): Electrochemical properties and applications for removal heavy metals, pesticide and solar cell. Appl. Surf. Sci. 506, 144896. DOI: 10.1016/j.apsusc.2019.144896.
  • 95. Suo, L., Dong, X., Gao, X., Xu, J., Huang, Z.D., Ye, J., . . . Zhao, L. (2019). Silica-coated magnetic graphene oxide nanocomposite based magnetic solid phase extraction of trace amounts of heavy metals in water samples prior to determination by inductively coupled plasma mass spectrometry. Microchem. J., 149, 104039. DOI: 10.1016/j.microc.2019.104039.
  • 96. Delhiraja, K., Vellingiri, K., Boukhvalov, D.W. & Philip, L. (2019). Development of highly water stable graphene Oxide-Based composites for the removal of pharmaceuticals and personal care products. Ind. Engin. Chem. Res. 58(8), 2899–2913. DOI: 10.1021/acs.iecr.8b02668.
  • 97. Liu, Y., Liu, R., Li, M., Yu, F. & He, C. (2019). Removal of pharmaceuticals by novel magnetic genipin-crosslinked chitosan/graphene oxide-SO3H composite. Carbohydr. Polym. 220, 141–148. DOI: 10.1016/j.carbpol.2019.05.060.
  • 98. Balasubramani, K., Sivarajasekar, N. & Naushad, M. (2020). Effective adsorption of antidiabetic pharmaceutical (metformin) from aqueous medium using graphene oxide nanoparticles: Equilibrium and statistical modelling. J. Molec. Liquids, 301, 112426. DOI: 10.1016/j.molliq.2019.112426.
  • 99. Abdullah, T.A., Juzsakova, T., Hafad, S. a. A., Rasheed, R.T., Aljammal, N., Mallah, M.A., . . . Aldulaimi, M. (2021). Functionalized multi-walled carbon nanotubes for oil spill cleanup from water. Clean Technol. Environ. Policy, 24(2), 519–541. DOI: 10.1007/s10098-021-02104-0.
  • 100. Abdullah, T.A., Nguyen, B., Juzsakova, T., Rasheed, R.T., Hafad, S. a. A., Mansoor, H.S., . . . Nguyen, V. (2021). Promotional effect of metal oxides (MxOy = TiO2, V2O5) on multi-walled carbon nanotubes (MWCNTs) for kerosene removal from contaminated water. Mat. Letters, 292, 129612. DOI: 10.1016/j.matlet.2021.129612.
  • 101. Ashraf, T., Alfryyan, N., Nasr, M., Ahmed, S.A. & Shaban, M. (2022). Removal of Scale-Forming Ions and Oil Traces from Oil Field Produced Water Using Graphene Oxide/Polyethersulfone and TiO2 Nanoribbons/Polyethersulfone Nanofiltration Membranes. Polymers, 14(13), 2572. DOI: 10.3390/polym14132572.
  • 102. Queiroz, R.N., De Figueiredo Neves, T., Da Silva, M.G.C., Mastelaro, V.R., Vieira, M.G.A. & Prediger, P. (2022). Comparative efficiency of polycyclic aromatic hydrocarbon removal by novel graphene oxide composites prepared from conventional and green synthesis. J. Cleaner Prod. 361, 132244. DOI: 10.1016/j.jclepro.2022.132244.
  • 103. Lawal, I.A., Lawal, M.M., Akpotu, S.O., Okoro, H.K., Klink, M.J. & Ndungu, P. (2020). Noncovalent Graphene Oxide Functionalized with Ionic Liquid: Theoretical, Isotherm, Kinetics, and Regeneration Studies on the Adsorption of Pharmaceuticals. Ind. Engin. Chem. Res. 59(11), 4945–4957. DOI: 10.1021/acs.iecr.9b06634.
  • 104. Hiew, B.Y.Z., Lee, L.Y., Lee, X.J., Gan, S., Thangalazhy-Gopakumar, S., Lim, S.S., . . . Yang, T.C. (2019). Adsorptive removal of diclofenac by graphene oxide: Optimization, equilibrium, kinetic and thermodynamic studies. J. Taiwan Instit. Chem. Engin. 98, 150–162. DOI: 10.1016/j.jtice.2018.07.034.
  • 105. Ninwiwek, N., Hongsawat, P., Punyapalakul, P. & Prarat, P. (2019). Removal of the antibiotic sulfamethoxazole from environmental water by mesoporous silica-magnetic graphene oxide nanocomposite technology: Adsorption characteristics, coadsorption and uptake mechanism. Colloids and Surf. A: Physicochem. Engin. Aspects, 580, 123716. DOI: 10.1016/j.colsurfa.2019.123716.
  • 106. Moreira, V.R., Lebron, Y. a. R., Da Silva, M.M., De Souza Santos, L.V., Jacob, R.S., De Vasconcelos, C.K.B. & Viana, M.M. (2020). Graphene oxide in the remediation of norfloxacin from aqueous matrix: simultaneous adsorption and degradation process. Environ. Sci. Pollut. Res. 27(27), 34513–34528. DOI: 10.1007/s11356-020-09656-6.
  • 107. Feng, X., Qiu, B., Dang, Y. & Sun, D. (2021). Enhanced adsorption of naproxen from aquatic environments by β-cyclodextrin-immobilized reduced graphene oxide. Chem. Engin. J. 412, 128710. DOI: 10.1016/j.cej.2021.128710.
  • 108. Javadian, S., Khalilifard, M. & Sadrpoor, S.M. (2019). Functionalized graphene oxide with core-shell of Fe3O4@ oliec acid nanospheres as a recyclable demulsifier for effective removal of emulsified oil from oily wastewater. J. Water Process Engin. 32, 100961. DOI: 10.1016/j.jwpe.2019.100961.
  • 109. Ferrero, G., Bock, M.S., Stenby, E.H., Hou, C. & Zhang, J. (2019). Reduced graphene oxide-coated microfibers for oil–water separation. Environ. Sci. Nano, 6(11), 3215–3224. DOI: 10.1039/c9en00549h.
  • 110. Hasanpour, M. (2023). Microcrystalline cellulose/graphene oxide aerogel for adsorption of cationic dye from aqueous solution. Mater. Sci. Technol. 1–13. DOI: 10.1080/02670836.2023.2216551.
  • 111. Kumari, H., Suman, S., Ranga, R., Chahal, S., Devi, S., . . . Parmar, R. (2023). A Review on Photocatalysis Used For Wastewater Treatment: Dye Degradation. Water, Air, & Soil Pollut. 234(6). DOI: 10.1007/s11270-023-06359-9.
  • 112. Sharkawy, H.M.E., Shawky, A.M., Elshypany, R. & Selim, H. (2023). Efficient photocatalytic degradation of organic pollutants over TiO2 nanoparticles modified with nitrogen and MoS2 under visible light irradiation. Scientific Reports, 13(1). DOI: 10.1038/s41598-023-35265-7.
  • 113. Song, B., Tang, J., Zhen, M. & Liu, X. (2019). Influence of graphene oxide and biochar on anaerobic degradation of petroleum hydrocarbons. J. Bioengin. 128(1), 72–79. DOI: 10.1016/j.jbiosc.2019.01.006.
  • 114. Lin, Y., Zhong, L., Dou, S., Shao, Z., Liu, Q. & Zheng, Y. (2019). Facile synthesis of electrospun carbon nanofiber/graphene oxide composite aerogels for high efficiency oils absorption. Environ. Internat. 128, 37–45. DOI: 10.1016/j.envint.2019.04.019.
  • 115. Liu, Q., Chen, J., Mei, T., He, X., Zhong, W., Liu, K., . . . Wang, D. (2018). A facile route to the production of polymeric nanofibrous aerogels for environmentally sustainable applications. J. Mat. Chem. A, Mat. for Energy and Sustainab. 6(8), 3692–3704. DOI: 10.1039/c7ta10107d.
  • 116. Feng, Y. & Yao, J. (2018). Design of Melamine Sponge-Based Three-Dimensional Porous Materials toward Applications. Ind. & Engin. Chem. Res. 57(22), 7322–7330. DOI: 10.1021/acs.iecr.8b01232.
  • 117. Wang, X., Liu, Z., Liu, X., Su, Y., Wang, J., Fan, T., . . . Long, Y. (2022). Ultralight and multifunctional PVDF/SiO2@ GO nanofibrous aerogel for efficient harsh environmental oil-water separation and crude oil absorption. Carbon, 193, 77–87. DOI: 10.1016/j.carbon.2022.03.028.
  • 118. Zhou, L. & Xu, Z. (2020). Ultralight, highly compressible, hydrophobic and anisotropic lamellar carbon aerogels from graphene/polyvinyl alcohol/cellulose nanofiber aerogel as oil removing absorbents. J. Hazard. Mat. 388, 121804. DOI: 10.1016/j.jhazmat.2019.121804.
  • 119. Xu, Z., Zhou, H., Tan, S., Jiang, X., Wu, W., Shi, J. & Chen, P. (2018). Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation. Beilstein J. Nanotech. 9, 508–519. DOI: 10.3762/bjnano.9.49.
  • 120. Mi, H., Jing, X., Huang, H., Peng, X. & Turng, L. (2018). Superhydrophobic Graphene/Cellulose/Silica Aerogel with Hierarchical Structure as Superabsorbers for High Efficiency Selective Oil Absorption and Recovery. Ind. & Engin. Chem. Res. 57(5), 1745–1755. DOI: 10.1021/acs.iecr.7b04388.
  • 121. Songsaeng, S., Thamyongkit, P. & Poompradub, S. (2019). Natural rubber/reduced-graphene oxide composite materials: Morphological and oil adsorption properties for treatment of oil spills. J. Adv. Res. 20, 79–89. DOI: 10.1016/j.jare.2019.05.007.
  • 122. Obaid, H.S. & Halbus, A.F. (2023). Boosting iron oxide nanoparticles activity for dyes removal and antifungal applications by modifying its surface with polyelectrolytes. Chem. Phys. Impact, 6, 100244. DOI: 10.1016/j.chphi.2023.100244.
  • 123. Liu, P., Yan, T., Zhang, J., Shi, L. & Zhang, D. (2017). Separation and recovery of heavy metal ions and salt ions from wastewater by 3D graphene-based asymmetric electrodes via capacitive deionization. J. Mat. Chem.. A, Mat. for Energy and Sustainab. 5(28), 14748–14757. DOI: 10.1039/c7ta03515b.
  • 124. Liu, C., Wu, T., Hsu, P., Xie, J., Zhao, J., Li, K., . . . Cui, Y. (2019). Direct/Alternating Current Electrochemical Method for Removing and Recovering Heavy Metal from Water Using Graphene Oxide Electrode. ACS Nano, 13(6), 6431–6437. DOI: 10.1021/acsnano.8b09301.
  • 125. Mao, M., Yan, T., Shen, J., Zhang, J. & Zhang, D. (2021). Capacitive Removal of Heavy Metal Ions from Wastewater via an Electro-Adsorption and Electro-Reaction Coupling Process. Environ. Sci. & Technol. 55(5), 3333–3340. DOI: 10.1021/acs. est.0c07849.
  • 126. Gao, Y., Ren, X., Wu, J., Hayat, T., Alsaedi, A., Cheng, C. & Chen, C. (2018). Graphene oxide interactions with co-existing heavy metal cations: adsorption, colloidal properties and joint toxicity. Environ. Sci. Nano, 5(2), 362–371. DOI: 10.1039/c7en01012e.
  • 127. Liu, X., Ma, R., Wang, X., Ma, Y., Yang, Y., Li, Z., . . . Chen, J. (2019). Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 252, 62–73. DOI: 10.1016/j.envpol.2019.05.050.
  • 128. Varadwaj, G.B.B., Oyetade, O.A., Rana, S., Martincigh, B.S., Jonnalagadda, S.B., & Nyamori, V.O. (2017). Facile Synthesis of Three-Dimensional Mg–Al Layered Double Hydroxide/Partially Reduced Graphene Oxide Nanocomposites for the Effective Removal of Pb2+ from Aqueous Solution. ACS Appl. Mat. & Interf. 9(20), 17290–17305. DOI: 10.1021/acsami.6b16528.
  • 129. McCoy, T.M., Brown, P., Eastoe, J. & Tabor, R.F. (2015). Noncovalent magnetic control and reversible recovery of graphene oxide using iron oxide and magnetic surfactants. ACS Appl. Mat. & Interf. 7(3), 2124–2133. DOI: 10.1021/am508565d.
  • 130. Lee, V., Dennis, R.V., Schultz, B.J., Jaye, C., Fischer, D.A. & Banerjee, S. (2012). Soft X-ray Absorption Spectroscopy Studies of the Electronic Structure Recovery of Graphene Oxide upon Chemical Defunctionalization. J. Phys. Chem. C, 116(38), 20591–20599. DOI: 10.1021/jp306497f.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a820f9b9-717c-45cf-b021-eb866ec5472f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.