PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Investigation of wear resistance of selected materials after slide burnishing process

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania odporności na zużycie wybranych materiałów poddanych procesowi nagniatania ślizgowego
Języki publikacji
EN PL
Abstrakty
EN
The article presents the research on the impact of slide burnishing process carried out with use of various ceramics on friction and wear of steel elements. In addition, surfaces after grinding, lapping and polishing processes were tested. The tribological couple was made of steel discs, toughened to a hardness of 40 ± 2 HRC, and balls made of 100Cr6 steel with a hardness of 62 HRC. The tests were carried out at three sliding speeds: 0.16 m/s, 0.32 m / s and 0.48 m/s. The research proved the possibility of improving selected tribological properties of friction pairs thanks to the use of slide burnishing process and also allowed to establish a number of relationships between the parameters characterizing the surface topography and the tribological parameters.
PL
W artykule przedstawiono wyniki badań wpływu procesu nagniatania ślizgowego realizowanego z wykorzystaniem różnych ceramik na wielkość zużycia oraz siłę tarcia elementów stalowych. Dodatkowo badaniom poddano powierzchnie po procesach szlifowania, docierania oraz polerowania. Skojarzenie materiałowe stanowiły tarcze stalowe ulepszone cieplnie do twardości 40±2 HRC oraz kulki ze stali100Cr6 o twardości 62 HRC. Badania zrealizowano przy trzech prędkościach poślizgu: 0,16 m/s, 0,32 m/s oraz 0,48 m/s. Badania udowodniły możliwość poprawy wybranych właściwości tribologicznych par trących dzięki zastosowaniu procesu nagniatania ślizgowego a także pozwoliły na ustalenie szeregu zależności pomiędzy parametrami charakteryzującymi strukturę geometryczną powierzchni oraz parametrami tribologicznymi.
Rocznik
Strony
432--439
Opis fizyczny
Bibliogr. 40 poz., rys., tab.
Twórcy
  • Rzeszow University of Technology Faculty of Mechanical Engineering and Aeronautics ul. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
autor
  • Rzeszow University of Technology Faculty of Mechanical Engineering and Aeronautics ul. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
  • Rzeszow University of Technology Faculty of Mechanics and Technology ul. Kwiatkowskiego 4, 37-450 Stalowa Wola, Poland
  • Rzeszow University of Technology Faculty of Mechanical Engineering and Aeronautics ul. Powstańców Warszawy 8, 35-959 Rzeszow, Poland
Bibliografia
  • 1. Bara M, Skoneczny W, Kaptacz S. A Tribological properties of ceramic-carbon surface layers obtained in electrolytes with a different graphite content. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2008; 4: 66-70.
  • 2. Chomienne V, Valiorgue F, Rech J, Verdu C. Influence of ball burnishing on residual stress profile of a 15-5PH stainless steel. CIRP Journal of Manufacturing Science and Technology 2016; 13: 90-96, https://doi.org/10.1016/j.cirpj.2015.12.003.
  • 3. Dzierwa A, Markopoulos A P. Influence of ball-burnishing process on surface topography parameters and tribological properties of hardened steel. Machines 2019; 7(1): 11, https://doi.org/10.3390/machines7010011.
  • 4. Dzierwa A, Pawlus P, Reizer R. The effect of ceramic tribo-elements on friction and wear of smooth steel surfaces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology 2019; 233(3): 456-465, https://doi.org/10.1177/1350650118780779.
  • 5. El-Tayeb N S M. Frictional behaviour of burnished copper surfaces under dry contact conditions. Engineering Research Bulletin 1994; HU Cairo: 171-184.
  • 6. El-Tayeb N S M, Low K O, Brevern P V. Enhancement of surface quality and tribological properties using ball burnishing process. Machining Science and Technology 2008; 12: 234-248, https://doi.org/10.1080/10910340802067536.
  • 7. Fitzpatric M E, Fry A T, Holdway P, Kandil F A, Shackleton J, Suominen L L. Determination of Residual Stresses by X-ray Diffraction - Issue 2. A National Measurement Good Practice Guide No. 52: National Physical Laboratory, 2005.
  • 8. Gadelmawla E S, Koura M M, Maksoud T M A, Elewa I M, Soliman H H. Roughness parameters. Journal of Materials Processing Technology 2002; 123: 133-145, https://doi.org/10.1016/S0924-0136(02)00060-2.
  • 9. Ganesh B K C, Sha W, Ramanaiah N, Krishnaiah A. Effect of shot peening on sliding wear and tensile behavior of titanium implant alloys. Materials & Design 2014; 56: 480-486, https://doi.org/10.1016/j.matdes.2013.11.052.
  • 10. Hamadache H, Laouar L, Zeghib N E, Chaoui K. Characteristics of Rb40 steel superficial layer under ball and roller burnishing. Journal of Materials Processing Technology 2006; 180: 130-136, https://doi.org/10.1016/j.jmatprotec.2006.05.013.
  • 11. Hassan A M. The effects of ball and roller burnishing on the surface roughness and hardness of some non-ferrous metals. Journal of Materials Processing Technology 1997; 72: 385-391, https://doi.org/10.1016/S0924-0136(97)00199-4.
  • 12. Janczewski Ł, Toboła D, Brostow W, Czechowski K, Hagg Lobland K E, Kot M, Zagórski K. Effects of ball burnishing on surface properties of low density polyethylene. Tribology International 2016; 93: 36-42, https://doi.org/10.1016/j.triboint.2015.09.006.
  • 13. Jedliński R. Diagnostyka w procesie wyceny wartości pojazdów samochodowych i ustalaniu przyczyn oraz następstw uszkodzeń. Diagnostyka 2005, 33: 65-70.
  • 14. Jerez-Mesa R, Gomez-Gras G, Travieso-Rodriguez J A. Surface roughness assessment after different strategy patterns of ultrasonic ball burnishing.Procedia Manufacturing 2017; 13: 710-717, https://doi.org/10.1016/j.promfg.2017.09.116.
  • 15. Jerez-Mesa R, Travieso-Rodríguez J A, Landon Y, Dessein G, Lluma-Fuentes J, Wagner V. Comprehensive analysis of surface integrity modification of ball-end milledTi-6Al-4V surfaces through vibration-assisted ball burnishing. Journal of Materials Processing Technology 2019; 267: 230-240, https://doi.org/10.1016/j.jmatprotec.2018.12.022.
  • 16. Korzynski M, Dzierwa A, Pacana A, Cwanek J. Fatigue strength of chromium coated elements and possibility of its improvement with ball peening. Surface and Coatings Technology 2009; 204: 615-620, https://doi.org/10.1016/j.surfcoat.2009.08.049.
  • 17. Kovács Z F, Viharos Z J, Kodácsy J. Determination of the working gap and optimal machining parameters for magnetic assisted ball burnishing. Measurement 2018; 118: 172-180, https://doi.org/10.1016/j.measurement.2018.01.033.
  • 18. Low K O, Wong K J. Influence of ball burnishing on surface quality and tribological characteristics of polymers under dry sliding conditions. Tribology International 2011; 44: 144-153. https://doi.org/10.1016/j.triboint.2010.10.005.
  • 19. Niemczewska-Wojcik M. Wear mechanisms and surface topography of artificial hip joint components at the subsequent stages of tribological tests. Measurement 2017; 107: 89-98, https://doi.org/10.1016/j.measurement.2017.04.045.
  • 20. PN-EN ISO 25178-2:2012 Geometrical Product Specifications (GPS) - Surface texture: Areal - Part 2: Terms, definitions and surface texture parameters.
  • 21. PN-EN ISO 4516:2004 Powłoki metalowe i inne nieorganiczne. Badania mikrotwardości metodą Vickersa i Knoopa.
  • 22. Priyadarsini Ch, Venkata Ramana V S N, Aruna Prabha K, Swethaa S. A review on ball, roller, low plasticity burnishing process. Materials Today: Proceedings 2019; 18(7): 5087-5099, https://doi.org/10.1016/j.matpr.2019.07.505.
  • 23. Pu Y, Zhao Y, Zhang H, Zhao G, Meng J, Song P. Study on the three-dimensional topography of the machined surface in laser-assisted machining of Si3N4 ceramics under different material removal modes. Ceramics International 2019; In press, Available online 14 November 2019, https://doi.org/10.1016/j.ceramint.2019.11.017.
  • 24. Rao D S, Suresh H H, Komaraiah M, Kempaiah U N. Investigations on the effect of ball burnishing parameters on surface hardness and wear resistance of HSLA dual-phase steels. Materials and Manufacturing Processes 2008; 23: 295-302, https://doi.org/10.1080/10426910801937306.
  • 25. Revankar G D, Shetty R, Rao S S, Gaitonde V N. Analysis of surface roughness and hardness in ball burnishing of titanium alloy. Measurement 2014; 58: 256-268, https://doi.org/10.1016/j.measurement.2014.08.043.
  • 26. Revankar G D, Shetty R, Rao S S, Gaitonde V N. Wear resistance enhancement of titanium alloy (Ti-6Al-4V) by ball burnishing process. Journal of Materials Research and Technology 2017; 6: 13-32, https://doi.org/10.1016/j.jmrt.2016.03.007.
  • 27. Sadowski Ł, Czarnecki S, Hoła J. Evaluation of the height 3D roughness parameters of concrete substrate and the adhesion to epoxy resin. International Journal of Adhesion and Adhesives 2016; 67: 3-13, https://doi.org/10.1016/j.ijadhadh.2015.12.019.
  • 28. Saldaña-Robles A, Plascencia-Mora H, Aguilera-Gómez E, Saldaña-Robles A, Marquez-Herrera A, Diosdado-De la Peña J A. Influence of ball-burnishing on roughness, hardness and corrosion resistance of AISI 1045 steel. Surface and Coatings Technology 2018; 339: 191-198, https://doi.org/10.1016/j.surfcoat.2018.02.013.
  • 29. Sedlacek M, Podgornik B, Vizintin J. Influence of surface preparation on roughness parameters, friction and wear. Wear 2009; 266: 482-487, https://doi.org/10.1016/j.wear.2008.04.017.
  • 30. Swirad S, Wdowik R. Determining the effect of ball burnishing parameters on surface roughness using the Taguchi method. Procedia Manufacturing 2019; 34: 287-292, https://doi.org/10.1016/j.promfg.2019.06.152.
  • 31. Swirad S, Wydrzynski D, Nieslony P, Krolczyk G M. Influence of hydrostatic burnishing strategy on the surface topography of martensitic steel. Measurement 2019; 138: 590-601, https://doi.org/10.1016/j.measurement.2019.02.081.
  • 32. Teimouri R, Amini S, Bagheri Bami A. Evaluation of optimized surface properties and residual stress in ultrasonic assisted ball burnishing of AA6061-T6. Measurement 2018; 116: 129-139, https://doi.org/10.1016/j.measurement.2017.11.001.
  • 33. Travieso-Rodríguez J A, Jerez-Mesa R, Gómez-Gras G, Llumà-Fuentes J, Casadesús-Farràs O, Madueño-Guerrero M. Hardening effect and fatigue behavior enhancement through ball burnishing on AISI 1038. Journal of Materials Research and Technology 2019, 8(6): 5639-5646, https://doi.org/10.1016/j.jmrt.2019.09.032.
  • 34. Valiorgue F, Zmelty V, Dumas M, Chomienne V, Verdu C, Lefebvre F, Rech J. Influence of residual stress profile and surface microstructure on fatigue life of a 15-5PH, Procedia Engineering 2018; 213: 623-629, https://doi.org/10.1016/j.proeng.2018.02.058.
  • 35. Yilmaz H, Sadeler R. Impact wear behavior of ball burnished 316L stainless steel. Surface and Coatings Technology 2019; 363: 369-378, https://doi.org/10.1016/j.surfcoat.2019.02.022.
  • 36. Zaleski K. The effect of vibratory and rotational shot peening and wear on fatigue life of steel. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2017; 19(1): 102-107, https://doi.org/10.17531/ein.2017.1.14.
  • 37. Zhang P, Liu Z. Enhancing surface integrity and corrosion resistance of laser cladded Cr-Ni alloys by hard turning and low plasticity burnishing. Applied Surface Science 2017; 409: 169-178, https://doi.org/10.1016/j.apsusc.2017.03.028.
  • 38. Żurowski W. Structural factors contributing to increased wear resistance of steel friction couples. Eksploatacja i Niezawodnosc - Maintenance and Reliability 2012; 14(1): 19-23.
  • 39. Żurowski W, Brzózka K, Górka B. Analysis of surface layers and wear products by Mössbauer spectral analysis. Wear 2013; 297(1): 958-965, https://doi.org/10.1016/j.wear.2012.10.012.
  • 40. Żurowski W, Brzózka K, Górka B. Structure of friction products and the surface of tribological system elements. Nukleonika 2013; 58: 99-103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-a81c0f35-2f0f-4e92-a922-f241ed8e6bcb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.